
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Themis: Fair and Efficient
GPU Cluster Scheduling

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi,
Shivaram Venkataraman, and Aditya Akella, University of Wisconsin-Madison;

Amar Phanishayee, Microsoft Research;
Shuchi Chawla, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi20/presentation/mahajan

THEMIS: Fair and Efficient GPU Cluster Scheduling
Kshiteej Mahajan⇤, Arjun Balasubramanian⇤, Arjun Singhvi⇤, Shivaram Venkataraman⇤

Aditya Akella⇤, Amar Phanishayee†, Shuchi Chawla⇤

University of Wisconsin - Madison
⇤
, Microsoft Research

†

Abstract: Modern distributed machine learning (ML) train-
ing workloads benefit significantly from leveraging GPUs.
However, significant contention ensues when multiple such
workloads are run atop a shared cluster of GPUs. A key ques-
tion is how to fairly apportion GPUs across workloads. We
find that established cluster scheduling disciplines are a poor
fit because of ML workloads’ unique attributes: ML jobs have
long-running tasks that need to be gang-scheduled, and their
performance is sensitive to tasks’ relative placement.

We propose THEMIS, a new scheduling framework for ML
training workloads. It’s GPU allocation policy enforces that
ML workloads complete in a finish-time fair manner, a new
notion we introduce. To capture placement sensitivity and
ensure efficiency, THEMIS uses a two-level scheduling archi-
tecture where ML workloads bid on available resources that
are offered in an auction run by a central arbiter. Our auction
design allocates GPUs to winning bids by trading off fairness
for efficiency in the short term, but ensuring finish-time fair-
ness in the long term. Our evaluation on a production trace
shows that THEMIS can improve fairness by more than 2.25X

and is ~5% to 250% more cluster efficient in comparison to
state-of-the-art schedulers.

1 Introduction
With the widespread success of machine learning (ML) for
tasks such as object detection, speech recognition, and ma-
chine translation, a number of enterprises are now incorporat-
ing ML models into their products. Training individual ML
models is time- and resource-intensive with each training job
typically executing in parallel on a number of GPUs.

With different groups in the same organization training ML
models, it is beneficial to consolidate GPU resources into a
shared cluster. Similar to existing clusters used for large scale
data analytics, shared GPU clusters for ML have a number of
operational advantages, e.g., reduced development overheads,
lower costs for maintaining GPUs, etc. However, today, there
are no ML workload-specific mechanisms to share a GPU
cluster in a fair manner.

Our conversations with cluster operators indicate that fair-
ness is crucial; specifically, that sharing an ML cluster be-
comes attractive to users only if they have the appropriate
sharing incentive. That is, if there are a total N users sharing
a cluster C, every user’s performance should be no worse than
using a private cluster of size C

N
. Absent such incentive, users

are either forced to sacrifice performance and suffer long wait
times for getting their ML jobs scheduled, or abandon shared
clusters and deploy their own expensive hardware.

Providing sharing incentive through fair scheduling mech-

anisms has been widely studied in prior cluster scheduling
frameworks, e.g., Quincy [18], DRF [8], and Carbyne [11].
However, these techniques were designed for big data work-
loads, and while they are used widely to manage GPU clusters
today, they are far from effective.

The key reason is that ML workloads have unique charac-
teristics that make existing “fair” allocation schemes actually
unfair. First, unlike batch analytics workloads, ML jobs have
long running tasks that need to be scheduled together, i.e.,
gang-scheduled. Second, each task in a job often runs for a
number of iterations while synchronizing model updates at
the end of each iteration. This frequent communication means
that jobs are placement-sensitive, i.e., placing all the tasks
for a job on the same machine or the same rack can lead to
significant speedups. Equally importantly, as we show, ML
jobs differ in their placement-sensitivity (Section 3.1.2).

In Section 3, we show that having long-running tasks means
that established schemes such as DRF – which aims to equally
allocate the GPUs released upon task completions – can arbi-
trarily violate sharing incentive. We show that even if GPU
resources were released/reallocated on fine time-scales [13],
placement sensitivity means that jobs with same aggregate
resources could have widely different performance, violating
sharing incentive. Finally, heterogeneity in placement sensi-
tivity means that existing scheduling schemes also violate

Pareto efficiency and envy-freedom, two other properties that
are central to fairness [34].

Our scheduler, THEMIS, address these challenges, and sup-
ports sharing incentive, Pareto efficiency, and envy-freedom
for ML workloads. It multiplexes a GPU cluster across ML

applications (Section 2), or apps for short, where every app
consists of one or more related ML jobs, each running with
different hyper-parameters, to train an accurate model for a
given task. To capture the effect of long running tasks and
placement sensitivity, THEMIS uses a new long-term fairness
metric, finish-time fairness, which is the ratio of the running
time in a shared cluster with N apps to running alone in a 1

N

cluster. THEMIS’s goal is thus to minimize the maximum fin-
ish time fairness across all ML apps while efficiently utilizing
cluster GPUs. We achieve this goal using two key ideas.

First, we propose to widen the API between ML apps and
the scheduler to allow apps to specify placement preferences.
We do this by introducing the notion of a round-by-round
auction. THEMIS uses leases to account for long-running ML
tasks, and auction rounds start when leases expire. At the start
of a round, our scheduler requests apps for their finish-time
fairness metrics, and makes all available GPUs visible to a
fraction of apps that are currently farthest in terms of their

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 289

fairness metric. Each such app has the opportunity to bid for
subsets of these GPUs as a part of an auction; bid values
reflect the app’s new (placement sensitive) finish time fairness
metric from acquiring different GPU subsets. A central arbiter
determines the global winning bids to maximize the aggregate
improvement in the finish time fair metrics across all bidding
apps. Using auctions means that we need to ensure that apps
are truthful when they bid for GPUs. Thus, we use a partial

allocation auction that incentivizes truth telling, and ensures
Pareto-efficiency and envy-freeness by design.

While a far-from-fair app may lose an auction round, per-
haps because it is placed less ideally than another app, its bid
values for subsequent auctions naturally increase (because a
losing app’s finish time fairness worsens), thereby improving
the odds of it winning future rounds. Thus, our approach con-
verges to fair allocations over the long term, while staying
efficient and placement-sensitive in the short term.

Second, we present a two-level scheduling design that con-
tains a centralized inter-app scheduler at the bottom level,
and a narrow API to integrate with existing hyper-parameter
tuning frameworks at the top level. A number of existing
frameworks such as Hyperdrive [29] and HyperOpt [3] can in-
telligently apportion GPU resources between various jobs in
a single app, and in some cases also terminate a job early if its
progress is not promising. Our design allows apps to directly
use such existing hyper parameter tuning frameworks. We de-
scribe how THEMIS accommodates various hyper-parameter
tuning systems and how its API is exercised in extracting
relevant inputs from apps when running auctions.

We implement THEMIS atop Apache YARN 3.2.0, and
evaluate by replaying workloads from a large enterprise trace.
Our results show that THEMIS is at least 2.25X more fair
(finish-time fair) than state-of-the-art schedulers while also
improving cluster efficiency by ~5% to 250%. To further
understand our scheduling decisions, we perform an event-
driven simulation using the same trace, and our results show
that THEMIS offers greater benefits when we increase the
fraction of network intensive apps, and the cluster contention.

2 Motivation
We start by defining the terminology used in the rest of the
paper. We then study the unique properties of ML workload
traces from a ML training GPU cluster at Microsoft. We end
by stating our goals based on our trace analysis and conversa-
tions with the cluster operators.

2.1 Preliminaries
We define an ML app, or simply an “app”, as a collection of
one or more ML model training jobs. Each app corresponds
to a user training an ML model for a high-level goal, such
as speech recognition or object detection. Users train these
models knowing the appropriate hyper-parameters (in which
case there is just a single job in the app), or they train a closely
related set of models (n jobs) that explore hyper-parameters

such as learning rate, momentum etc. [21, 29] to identify and
train the best target model for the activity at hand.

Each job’s constituent work is performed by a number of
parallel tasks. At any given time, all of a job’s tasks collec-
tively process a mini-batch of training data; we assume that
the size of the batch is fixed for the duration of a job. Each task
typically processes a subset of the batch, and, starting from
an initial version of the model, executes multiple iterations of
the underlying learning algorithm to improve the model. We
assume all jobs use the popular synchronous SGD [4].

We consider the finish time of an app to be when the best
model and relevant hyper-parameters have been identified.
Along the course of identifying such a model, the app may
decide to terminate some of its constituent jobs early [3, 29];
such jobs may be exploring hyper-parameters that are clearly
sub-optimal (the jobs’ validation accuracy improvement over
iterations is significantly worse than other jobs in the same
app). For apps that contain a single job, finish time is the time
taken to train this model to a target accuracy or maximum
number of iterations.

2.2 Characterizing Production ML Apps
We perform an analysis of the properties of GPU-based ML
training workloads by analyzing workload traces obtained
from Microsoft. The GPU cluster we study supports over
5000 unique users. We restrict our analysis to a subset of the
trace that contains 85 ML training apps submitted using a
hyper-parameter tuning framework.

GPU clusters are known to be heavily contented [19], and
we find this also holds true in the subset of the trace of ML
apps we consider (Figure 1). For instance, we see that GPU
demand is bursty and the average GPU demand is ~50 GPUs.

We also use the trace to provide a first-of-a-kind view
into the characteristics of ML apps. As mentioned in Section
2.1, apps may either train a single model to reach a target
accuracy (1 job) or may use the cluster to explore various
hyper-parameters for a given model (n jobs). Figure 2 shows
that ~10% of the apps have 1 job, and around ~90% of the
apps perform hyper-parameter exploration with as many as
100 jobs (median of 75 jobs). Interestingly, there is also a sig-
nificant variation in the number of hyper-parameters explored
ranging from a few tens to about a hundred (not shown).

We also measure the GPU time of all ML apps in the trace.
If an app uses 2 jobs with 2 GPUs each for a period of 10
minutes, then the GPU time for — the tasks would be 10
minutes each, the jobs would be 20 minutes each, and the app
would be 40 GPU minutes. Figure 3 and Figure 4 show the
long running nature of ML apps: the median app takes 11.5
GPU days and the median task takes 3.75 GPU hours. There
is a wide diversity with a significant fraction of jobs and apps
that are more than 10X shorter and many that are more than
10X longer.

From our analysis we see that ML apps are heterogeneous
in terms of resource usage, and number of jobs submitted.

290 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Aggregate GPU demand of
ML apps over time

Figure 2: Job count distribution across
different apps

Figure 3: ML app time (= total GPU
time across all jobs in app) distribution

Figure 4: Distribution of Task GPU
times

Running times are also heterogeneous, but at the same time
much longer than, e.g., running times of big data analytics
jobs (typically a few hours [12]). Handling such heterogene-
ity can be challenging for scheduling frameworks, and the
long running nature may make controlling app performance
particularly difficult in a shared setting with high contention.

We next discuss how some of these challenges manifest in
practice from both cluster user and cluster operator perspec-
tives, and how that leads to our design goals for THEMIS.

2.3 Our Goal
Our many conversations with operators of GPU clusters re-
vealed a common sentiment, reflected in the following quote:

“ We were scheduling with a balanced approach ... with guidance

to ‘play nice’. Without firm guard rails, however, there were always

individuals who would ignore the rules and dominate the capacity. ”

— An operator of a large GPU cluster at Microsoft

With long app durations, users who dominate capacity im-
pose high waiting times on many other users. Some such users
are forced to “quit” the cluster as reflected in this quote:

“Even with existing fair sharing schemes, we do find users frus-

trated with the inability to get their work done in a timely way... The

frustration frequently reaches the point where groups attempt or

succeed at buying their own hardware tailored to their needs. ”

— An operator of a large GPU cluster at Microsoft

While it is important to design a cluster scheduler that
ensures efficient use of highly contended GPU resources,
the above indicates that it is perhaps equally, if not more
important, for the scheduler to allocate GPU resources in a
fair manner across many diverse ML apps; in other words,
roughly speaking, the scheduler’s goal should be to allow all
apps to execute their work in a “timely way”.

In what follows, we explain using examples, measurements,
and analysis, why existing fair sharing approaches when ap-
plied to ML clusters fall short of the above goal, which we
formalize next. We identify the need both for a new fairness
metric, and for a new scheduler architecture and API that
supports resource division according to the metric.

3 Finish-Time Fair Allocation
We present additional unique attributes of ML apps and dis-
cuss how they, and the above attributes, affect existing fair
sharing schemes.

3.1 Fair Sharing Concerns for ML Apps
The central question is - given R GPUs in a cluster C and N

ML apps, what is a fair way to divide the GPUs.
As mentioned above, cluster operators indicate that the pri-

mary concern for users sharing an ML cluster is performance
isolation that results in “timely completion”. We formalize
this as: if N ML Apps are sharing a cluster then an app should
not run slower on the shared cluster compared to a dedicated
cluster with 1

N
of the resources. Similar to prior work [8],

we refer to this property as sharing incentive (SI). Ensuring
sharing incentive for ML apps is our primary design goal.

In addition, resource allocation mechanisms must satisfy
two other basic properties that are central to fairness [34]:
Pareto Efficiency (PE) and Envy-Freeness (EF) 1

While prior systems like Quincy [18], DRF [8] etc. aim at
providing SI, PE and EF, we find that they are ineffective for
ML clusters as they fail to consider the long durations of ML

tasks and placement preferences of ML apps.
3.1.1 ML Task Durations
We empirically study task durations in ML apps and show how
they affect the applicability of existing fair sharing schemes.

Figure 4 shows the distribution of task durations for ML
apps in a large GPU cluster at Microsoft. We note that the
tasks are, in general, very long, with the median task roughly
3.75 hours long. This is in stark contrast with, e.g., big data
analytics jobs, where tasks are typically much shorter in dura-
tion [26].

State of the art fair allocation schemes such as DRF [8]
provide instantaneous resource fairness. Whenever resources
become available, they are allocated to the task from an app
with the least current share. For big data analytics, where
task durations are short, this approximates instantaneous re-
source fairness, as frequent task completions serve as oppor-
tunities to redistribute resources. However, blindly applying
such schemes to ML apps can be disastrous: running the much
longer-duration ML tasks to completion could lead to newly
arriving jobs waiting inordinately long for resources. This
leads to violation of SI for late-arriving jobs.

Recent “attained-service” based schemes address this prob-
lem with DRF. In [13], for example, GPUs are leased for a
certain duration, and when leases expire, available GPUs are
given to the job that received the least GPU time thus far;

1Informally, a Pareto Efficient allocation is one where no app’s allocation
can be improved without hurting some other app. And, envy-freeness means
that no app should prefer the resource allocation of an other app.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 291

VGG16 Inception-v3
4 P100 GPUs on 1 server 103.6 images/sec 242 images/sec

4 P100 GPUs across 2 servers 80.4 images/sec 243 images/sec
Table 1: Effect of GPU resource allocation on job throughput. VGG16 has a
machine-local task placement preference while Inception-v3 does not.

this is the “least attained service”, or LAS allocation policy.
While this scheme avoids the starvation problem above for
late-arriving jobs, it still violates all key fairness properties
because it is placement-unaware, an issue we discuss next.
3.1.2 Placement Preferences
Next, we empirically study placement preferences of ML apps.
We use examples to show how ignoring these preferences in
fair sharing schemes violates key properties of fairness.
Many apps, many preference patterns: ML cluster users
today train a variety of ML apps across domains like com-
puter vision, NLP and speech recognition. These models have
significantly different model architectures, and more impor-
tantly, different placement preferences arising from different
computation, communication needs. For example, as shown
in Table 1, VGG16 has a strict machine-local task placement
preference while Inception-v3 does not. This preference in-
herently stems from the fact that VGG-like architectures have
very large number of parameters and incur greater overheads
for updating gradients over the network.

We use examples to show the effect of placement on DRF’s
allocation strategy. Similar examples and conclusions apply
for the LAS allocation scheme.
Ignoring placement affects SI: example: Consider the In-
stance 1 in Figure 5. In this example, there are two placement
sensitive ML apps - A1 and A2, both training VGG16. Each
ML app has just one job in it with 4 tasks and the cluster
has two 4 GPU machines. As shown above, given the same
number of GPUs both apps prefer GPUs to be in the same
server than spread across servers.

For this example, DRF [8] equalizes the dominant resource
share of both the apps under resource constraints and allocates
4 GPUs to each ML app. In Instance 1 of Figure 5 we show
an example of a valid DRF allocation. Both apps get the
same type of placement with GPUs spread across servers.
This allocation violates SI for both apps as their performance
would be better if each app just had its own dedicated server.
Ignoring placement affects PE, EF: example: Consider In-
stance 2 in Figure 5 with two apps - A1 (Inception-v3) which
is not placement sensitive and A2 (VGG16) which is place-
ment sensitive. Each app has one job with four tasks and the
cluster has two machines: one 4 GPU and two 2 GPU.

Now consider the allocation in Instance 2, where A1 is al-
located on the 4 GPU machine whereas A2 is allocated across
the 2 GPU machines. This allocation violates EF, because
A2 would prefer A1’s allocation. It also violates PE because
swapping the two apps’ allocation would improve A2’s per-
formance without hurting A1.

In fact, we can formally show that:
Theorem 3.1. Existing fair schemes (DRF, LAS) ignore place-
ment preferences and violate SI, PE, EF for ML apps.

A1

A2
A1 A2

Instance 1: 2 4-GPU Instance 2: 1 4-GPU; 2 2-GPU
Figure 5: By ignoring placement preference, DRF violates sharing incentive.

�!
G [0,0] [0,1] = [1,0] [1,1]
r rold

200
400 = 1

2
100
400 = 1

4

Table 2: Example table of bids sent from apps to the scheduler
Proof Refer to Appendix.

In summary, existing schemes fail to provide fair sharing
guarantees as they are unaware of ML app characteristics.
Instantaneous fair schemes such as DRF fail to account for
long task durations. While least-attained service schemes
overcome that limitation, neither approach’s input encodes
placement preferences. Correspondingly, the fairness metrics
used - i.e., dominant resource share (DRF) or attained service
(LAS) - do not capture placement preferences.

This motivates the need for a new placement-aware fairness
metric, and corresponding scheduling discipline. Our obser-
vations about ML task durations imply that, like LAS, our fair
allocation discipline should not depend on rapid task comple-
tions, but instead should operate over longer time scales.

3.2 Metric: Finish-Time Fairness
We propose a new metric called as finish-time fairness, r.
r = Tsh

Tid
.

Tid is the independent finish-time and Tsh is the shared

finish-time. Tsh is the finish-time of the app in the shared
cluster and it encompasses the slowdown due to the placement
and any queuing delays that an app experiences in getting
scheduled in the shared cluster. The worse the placement, the
higher is the value of Tsh. Tid , is the finish-time of the ML app
in its own independent and exclusive 1

N
share of the cluster.

Given the above definition, sharing incentive for an ML app
can be attained if r 1. 2

To ensure this, it is necessary for the allocation mechanism
to estimate the values of r for different GPU allocations.
Given the difficulty in predicting how various apps will react
to different allocations, it is intractable for the scheduling
engine to predict or determine the values of r.

Thus, we propose a new wider interface between the app
and the scheduling engine that can allow the app to express
a preference for each allocation. We propose that apps can
encode this information as a table. In Table 2, each column has
a permutation of a potential GPU allocation and the estimate
of r on receiving this allocation. We next describe how the
scheduling engine can use this to provide fair allocations.

3.3 Mechanism: Partial Allocation Auctions
The finish-time fairness ri(.) for an ML app Ai is a function
of the GPU allocation ~Gi that it receives. The allocation policy

2Note, sharing incentive criteria of r 1 assumes the presence of an
admission control mechanism to limit contention for GPU resources. An
admission control mechanism that rejects any app if the aggregate number of
GPUs requested crosses a certain threshold is a reasonable choice.

292 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Pseudocode 1 Finish-Time Fair Policy
1: Applications {Ai} . set of apps
2: Bids {ri(.)} . valuation function for each app i

3: Resources
�!
R . resource set available for auction

4: Resource Allocations {
�!
G i} . resource allocation for each app i

5: procedure AUCTION({Ai}, {ri(.)},
�!
R)

6: �!
G i,p f = arg max ’i 1/ri(

�!
Gi) . proportional fair (pf) allocation per app i

7: �!
G

�i

j,p f
= arg max ’ j!=i 1/r j(

�!
Gj) . pf allocation per app j without app i

8: ci =
’ j!=i 1/r j (

�!
G j,p f)

’ j!=i 1/r j (
�!
G
�i

j,p f
)

9: �!
Gi = ci *

�!
G i,p f . allocation per app i

10: �!
L = Âi 1� ci *

�!
G i,p f . aggregate leftover resource

11: return {
�!
Gi},

�!
L

12: end procedure
13: procedure ROUNDBYROUNDAUCTIONS({Ai}, {ri(.)})
14: while True do
15: ONRESOURCEAVAILABLEEVENT ~R0:
16: {A

sort

i
} = SORT({Ai}) on rcurrent

i

17: {A
f ilter

i
} = get top 1� f fraction of apps from {Asort }

18: {r f ilter

i
(.)} = get updated r(.) from apps in {A

f ilter

i
}

19: {
���!
G

f ilter

i
},
�!
L = AUCTION({A

f ilter

i
}, {r f ilter

i
(.)}, ~R0)

20: {A
un f ilter

i
} = {Ai}�{A

f ilter

i
}

21: allocate
�!
L to {A

un f ilter

i
} at random

22: end while
23: end procedure

takes these ri(.)’s as inputs and outputs allocations ~Gi.
A straw-man policy that sorts apps based on their reported

ri values and allocates GPUs in that order reduces the max-
imum value of r but has one key issue. An app can submit
false information about their r values. This greedy behavior
can boost their chance of winning allocations. Our conversa-
tions with cluster operators indicate that apps request for more
resources than required and they require manual monitoring
(“We also monitor the usage. If they don’t use it, we reclaim

it and pass it on to the next approved project”). Thus, this
simple straw-man fails to incentivize truth-telling and violates
another key property, namely, strategy proofness (SP).

To address this challenge, we propose to use auctions in
THEMIS. We begin by describing a simple mechanism that
runs a single-round auction and then extend to a round-by-
round mechanism that also considers online updates.
3.3.1 One-Shot Auction
Details of the inputs necessary to run the auction are given
first, followed by how the auction works given these inputs.
Inputs: Resources and Bids. ~R represents the total GPU
resources to be auctioned, where each element is 1 and the
number of dimensions is the number of GPUs to be auctioned.

Each ML app bids for these resources. The bid for each ML
app consists of the estimated finish-time fair metric (ri) values
for several different GPU allocations (~Gi). Each element in
~Gi can be {0,1}. A set bit implies that GPU is allocated to
the app. Example of a bid can be seen in Table 2.
Auction Overview. To ensure that the auction can provide
strategy proofness, we propose using a partial allocation

auction (PA) mechanism [5]. Partial allocation auctions have
been shown to incentivize truth telling and are an appropriate
fit for modeling subsets of indivisible goods to be auctioned
across apps. Pseudocode 1, line 5 shows the PA mechanism.

There are two aspects to auctions that are described next.
1. Initial allocation. PA starts by calculating an intrinsically
proportionally-fair allocation ~Gi,p f for each app Ai by maxi-
mizing the product of the valuation functions i.e., the finish-
time fair metric values for all apps (Pseudocode 1, line 6).
Such an allocation ensures that it is not possible to increase
the allocation of an app without decreasing the allocation of
at least another app (satisfying PE [5]).
2. Incentivizing Truth Telling. To induce truthful reporting
of the bids, the PA mechanism allocates app Ai only a fraction
ci < 1 of Ai’s proportional fair allocation ~Gi,p f , and takes
1� ci as a hidden payment (Pseudocode 1, line 10). The ci is
directly proportional to the decrease in the collective valuation
of the other bidding apps in a market with and without app Ai

(Pseudocode 1, line 8). This yields the final allocation ~Gi for
app Ai (Pseudocode 1, line 9).

Note that the final result, ~Gi is not a market-clearing alloca-
tion and there could be unallocated GPUs~L that are leftover
from hidden payments. Hence, PA is not work-conserving.
Thus, while the one-shot auction provides a number of prop-
erties related to fair sharing it does not ensure SI is met.
Theorem 3.2. The one-shot partial allocation auction guaran-
tees SP, PE and EF, but does not provide SI.
Proof Refer to Appendix. The intuitive reason for this is
that, with unallocated GPUs as hidden payments, PA does not
guarantee r 1 for all apps. To address this we next look
at multi-round auctions that can maximize SI for ML apps.
We design a mechanism that is based on PA and preserves
its properties, but offers slightly weaker guarantee, namely
min max r. We describe this next. It runs in multiple rounds.
Empirically, we find that it gets r 1 for most apps, even
without admission control.

3.3.2 Multi-round auctions
To maximize sharing incentive and to ensure work conserva-
tion, our goal is to ensure r 1 for as many apps as possible.
We do this using three key ideas described below.
Round-by-Round Auctions: With round-by-round auctions,
the outcome of an allocation from an auction is binding only
for a lease duration. At the end of this lease, the freed GPUs
are re-auctioned. This also handles the online case as any auc-
tion is triggered on a resource available event. This takes care
of app failures and arrivals, as well as cluster reconfigurations.

At the beginning of each round of auction, the policy so-
licits updated valuation functions r(.) from the apps. The
estimated work and the placement preferences for the case
of ML apps are typically time varying. This also makes our
policy adaptive to such changes.
Round-by-Round Filtering: To maximize the number of
apps with r 1, at the beginning of each round of auctions
we filter the 1� f fraction of total active apps with the greatest
values of current estimate of their finish-time fair metric r.
Here, f 2 (0,1) is a system-wide parameter.

This has the effect of restricting the auctions to the apps that

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 293

are at risk of not meeting SI. Also, this restricts the auction to
a smaller set of apps which reduces contention for resources
and hence results in smaller hidden payments. It also makes
the auction computationally tractable.

Over the course of many rounds, filtering maximizes the
number of apps that have SI. Consider a far-from-fair app i

that lost an auction round. It will appear in future rounds with
much greater likelihood relative to another less far-from-fair
app k that won the auction round. This is because, the win-
ning app k was allocated resources; as a result, it will see its
r improve over time; thus, it will eventually not appear in the
fraction 1� f of not-so-fairly-treated apps that participate in
future rounds. In contrast, i’s r will increase due to the wait-
ing time, and thus it will continue to appear in future rounds.
Further an app that loses multiple rounds will eventually lose
its lease on all resources and make no further progress, caus-
ing its r to become unbounded. The next auction round the
app participates in will likely see the app’s bid winning, be-
cause any non-zero GPU allocation to that app will lead to a
huge improvement in the app’s valuation.

As f ! 1, our policy provides greater guarantee on SI.
However, this increase in SI comes at the cost of efficiency.
This is because f ! 1 restricts the set of apps to which avail-
able GPUs will be allocated; with f ! 0 available GPUs can
be allocated to apps that benefit most from better placement,
which improves efficiency at the risk of violating SI.
Leftover Allocation: At the end of each round we have left-
over GPUs due to hidden payments. We allocate these GPUs
at random to the apps that did not participate in the auction in
this round. Thus our overall scheme is work-conserving.

Overall, we prove that:
Theorem 3.3. Round-by-round auctions preserve the PE, EF
and SP properties of partial auctions and maximize SI.
Proof. Refer to Appendix.

To summarize, in THEMIS we propose a new finish-time
fairness metric that captures fairness for long-running, place-
ment sensitive ML apps. To perform allocations, we propose
using a multi-round partial allocation auction that incentivizes
truth telling and provides Pareto efficient, envy free alloca-
tions. By filtering the apps considered in the auction, we max-
imize sharing incentive and hence satisfy all the properties
necessary for fair sharing among ML applications.

4 System Design
We first list design requirements for an ML cluster scheduler
taking into account the fairness metric and auction mechanism
described in Section 3, and the implications for the THEMIS
scheduler architecture. Then, we discuss the API between the
scheduler and the hyper-parameter optimizers.

4.1 Design Requirements
Separation of visibility and allocation of resources. Core
to our partial allocation mechanism is the abstraction of mak-
ing available resources visible to a number of apps but al-

locating each resource exclusively to a single app. As we
argue below, existing scheduling architectures couple these
concerns and thus necessitate the design of a new scheduler.
Integration with hyper-parameter tuning systems. Hyper-
parameter optimization systems such as Hyperband [21], Hy-
perdrive [29] have their own schedulers that decide the re-
source allocation and execution schedule for the jobs within
those apps. We refer to these as app-schedulers. One of our
goals in THEMIS is to integrate with these systems with mini-
mal modifications to app-schedulers.

These two requirements guide our design of a new two-

level semi-optimistic scheduler and a set of corresponding
abstractions to support hyper-parameter tuning systems.

4.2 THEMIS Scheduler Architecture
Existing scheduler architectures are either pessimistic or fully
optimistic and both these approaches are not suitable for real-
izing multi-round auctions. We first describe their shortcom-
ings and then describe our proposed architecture.
4.2.1 Need for a new scheduling architecture
Two-level pessimistic schedulers like Mesos [17] enforce pes-
simistic concurrency control. This means that visibility and
allocation go hand-in-hand at the granularity of a single app.
There is restricted single-app visibility as available resources
are partitioned by a mechanism internal to the lower-level
(i.e., cross-app) scheduler and offered only to a single app at
a time. The tight coupling of visibility and allocation makes it
infeasible to realize round-by-round auctions where resources
need to be visible to many apps but allocated to just one app.

Shared-state fully optimistic schedulers like Omega [30]
enforce fully optimistic concurrency control. This means that
visibility and allocation go hand-in-hand at the granularity of
multiple apps. There is full multi-app visibility as all cluster
resources and their state is made visible to all apps. Also, all
apps contend for resources and resource allocation decisions
are made by multiple apps at the same time using transactions.
This coupling of visibility and allocation in a lock-free manner
makes it hard to realize a global policy like finish-time fairness
and also leads to expensive conflict resolution (needed when
multiple apps contend for the same resource) when the cluster
is highly contented, which is typically the case in shared GPU
clusters.

Thus, the properties required by multi-round auctions, i.e.,
multi-app resource visibility and single-app resource alloca-
tion granularity, makes existing architectures ineffective.
4.2.2 Two-Level Semi-Optimistic Scheduling
The two-levels in our scheduling architecture comprise of
multiple app-schedulers and a cross-app scheduler that we
call the ARBITER. The ARBITER has our scheduling logic.
The top level per-app schedulers are minimally modified to
interact with the ARBITER. Figure 6 shows our architecture.

Each GPU in a THEMIS-managed cluster has a lease associ-
ated with it. The lease decides the duration of ownership of the
GPU for an app. When a lease expires, the resource is made

294 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

THEMIS ARBITER

Ask all
apps for !
estimates

Offers
to subset
of apps

Allocate
Winning

Bids

Make Bids

Receive Allocation

Give ! Estimates

AGENT

App1 App2 Appn

.
Appm

1 2 3 4

5

Resource Alloc !new

0 !old

M1:2G
M1:1G,M2:1G !old - "

!old - 2"

(a)

(b)

Apps
make
bids

Figure 6: THEMIS Design. (a) Sequence of events in THEMIS - starts with
a resource available event and ends with resource allocations. (b) Shows
a typical bid valuation table an App submits to ARBITER. Each row has a
subset of the complete resource allocation and the improved value of rnew.

available for allocation. THEMIS’s ARBITER pools available
resources and runs a round of the auctions described earlier.
During each such round, the resource allocation proceeds in
5 steps spanning 2 phases (shown in Figure 6):

The first phase, called the visibility phase, spans steps 1–3.

1 The ARBITER asks all apps for current finish-time fair
metric estimates. 2 The ARBITER initiates auctions, and
makes the same non-binding resource-offer of the available
resources to a fraction f 2 [0,1] of ML apps with worst finish-
time fair metrics (according to round-by-round filtering de-
scribed earlier). To minimize changes in the ML app scheduler
to participate in auctions, THEMIS introduces an AGENT that
is co-located with each ML app scheduler. The AGENT serves
as an intermediary between the ML app and the ARBITER. 3
The apps examine the resource offer in parallel. Each app’s
AGENT then replies with a single bid that contains preferences
for desired resource allocations.

The second phase, allocation phase, spans steps 4–5. 4
The ARBITER, upon receiving all the bids for this round,
picks winning bids according to previously described partial
allocation algorithm and leftover allocation scheme. It then
notifies each AGENT of its winning allocation (if any). 5 The
AGENT propagates the allocation to the ML app scheduler,
which can then decide the allocation among constituent jobs.

In sum, the two phase resource allocation means that our
scheduler enforces semi-optimistic concurrency control. Sim-
ilar to fully optimistic concurrency control, there is multi-app
visibility as the cross-app scheduler offers resources to multi-
ple apps concurrently. At the same time, similar to pessimistic
concurrency control, the resource allocations are conflict-free
guaranteeing exclusive access of a resource to every app.

To enable preparation of bids in step 3, THEMIS imple-
ments a narrow API from the ML app scheduler to the AGENT
that enables propagation of app-specific information. An
AGENT’s bid contains a valuation function (r(.)) that pro-
vides, for each resource subset, an estimate of the finish-time
fair metric the app will achieve with the allocation of the
resource subset. We describe how this is calculated next.

4.3 AGENT and AppScheduler Interaction
An AGENT co-resides with an app to aid participation in
auctions. We now describe how AGENTs prepare bids based
on inputs provided by apps, the API between an AGENT
and its app, and how AGENTs integrate with current hyper-
parameter optimization schedulers.
4.3.1 Single-Job ML Apps
For ease of explanation, we first start with the simple case of
an ML app that has just one ML training job which can use
at most job_demandmax GPUs. We first look at calculation
of the finish-time fair metric, r. We then look at a multi-job
app example so as to better understand the various steps and
interfaces in our system involved in a multi-round auction.
Calculating r(�!G). Equation 1 shows the steps for calculating
r for a single job given a GPU allocation of

�!
G in a cluster

C with RC GPUs. When calculating r we assume that the
allocation

�!
G is binding till job completion.

r(�!G) = Tsh(
�!
G)/Tid

Tsh = Tcurrent �Tstart+

iter_le f t ⇤ iter_time(
�!
G)

Tid = Tcluster ⇤Navg

iter_time(
�!
G) =

iter_time_serial ⇤S(�!G)

min(||�!G ||1, job_demandmax)

Tcluster =
iter_total ⇤ iter_serial_time

min(RC, job_demandmax)

(1)

Tsh is the shared finish-time and is a function of the allo-
cation

�!
G that the job receives. For the single job case, it has

two terms. First, is the time elapsed (= Tcurrent �Tstart). Time
elapsed also captures any queuing delays or starvation time.
Second, is the time to execute remaining iterations which
is the product of the number of iterations left (iter_le f t)
and the iteration time (iter_time(

�!
G)). iter_time(

�!
G) depends

on the allocation received. Here, we consider the common-
case of the ML training job executing synchronous SGD.
In synchronous SGD, the work in an iteration can be paral-
lelized across multiple workers. Assuming linear speedup,
this means that the iteration time is the serial iteration time
(iter_time_serial) reduced by a factor of the number of GPUs
in the allocation, ||�!G ||1 or job_demandmax whichever is
lesser. However, the linear speedup assumption is not true
in the common case as network overheads are involved. We
capture this via a slowdown penalty, S(�!G), which depends on
the placement of the GPUs in the allocation. Values for S(�!G)
can typically be obtained by profiling the job offline for a
few iterations. 3 The slowdown is captured as a multiplicative
factor, S(�!G)� 1, by which Tsh is increased.

3S(�!G) can also be calculated in an online fashion. First, we use crude
placement preference estimates to begin with for single machine (=1), cross-
machine (=1.1), cross-rack (=1.3) placement. These are replaced with ac-
curate estimates by profiling iteration times when the ARBITER allocates

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 295

Tid is the estimated finish-time in an independent 1
Navg

clus-
ter. Navg is the average contention in the cluster and is the
weighted average of the number of apps in the system during
the lifetime of the app. We approximate this as the finish-time
of the app in the whole cluster, Tcluster multiplied by the aver-
age contention. Tcluster assumes linear speedup when the app
executes with all the cluster resources RC or maximum app
demand whichever is lesser. It also assumes no slowdown.
Thus, it is approximated as iter_total⇤iter_serial_time

min(RC , job_demandmax)
.

4.3.2 Generalizing to Multiple-Job ML Apps
ML app schedulers for hyper-parameter optimization systems
typically go from aggressive exploration of hyper-parameters
to aggressive exploitation of best hyper-parameters. While
there are a number of different algorithms for choosing the
best hyper-parameters [3, 21] to run, we focus on early stop-
ping criteria as this affects the finish time of ML apps.

As described in prior work [9], automatic stopping algo-
rithms can be divided into two categories: Successive Halving
and Performance Curve Stopping. We next discuss how to
compute Tsh for each case.
Successive Halving refers to schemes which start with a total
time or iteration budget B and apportion that budget by peri-
odically stopping jobs that are not promising. For example,
if we start with n hyper parameter options, then each one is
submitted as a job with a demand of 1 GPU for a fixed number
of iterations I. After I iterations, only the best n

2 ML training
jobs are retained and assigned a maximum demand of 2 GPUs
for the same number of iterations I. This continues until we
are left with 1 job with a maximum demand of n GPUs. Thus
there are a total of log2n phases in Successive Halving. This
scheme is used in Hyperband [21] and Google Vizier [9].

We next describe how to compute Tsh and Tid for successive
halving. We assume that the given allocation

�!
G lasts till app

completion and the total time can be computed by adding up
the time the app spends for each phase. Consider the case of
phase i which has J = n

2i�1 jobs. Equation 2 shows the calcu-
lation of Tsh(i), the shared finish time of the phase. We assume
a separation of concerns where the hyper-parameter optimizer
can determine the optimal allocation of GPUs within a phase

and thus estimate the value of S(�!G j). Along with iter_le f t,
serial_iter_time, the AGENT can now estimate Tsh(j) for each
job in the phase. We mark the phase as finished when the
slowest or last job in the app finishes the phase (max j). Then
the shared finish time for the app is the sum of the finish times
of all constituent phases.

To estimate the ideal finish-time we compute the total time
to execute the app on the full cluster. We estimate this using
the budget B which represents the aggregate work to be done
and, as before, we assume linear speedup to the maximum
number of GPUs the app can use app_demandmax.

unseen placements. The multi-round nature of allocations means that errors
in early estimates do not have a significant effect.

Tsh(i) = max j{T (
�!
G j)}

Tsh = Â
i

Tsh(i)

Tcluster =
B

min(RC,app_demandmax)

Tid = Tcluster ⇤Navg

(2)

The AGENT generates r using the above procedure for
all possible subsets of {�!G} and produces a bid table similar
to the one shown in Table 2 before. The API between the
AGENT and hyper-parameter optimizer is shown in Figure 7
and captures the functions that need to implemented by the
hyper-parameter optimizer.
Performance Curve Stopping refers to schemes where the
convergence curve of a job is extrapolated to determine which
jobs are more promising. This scheme is used by Hyper-
drive [29] and Google Vizier [9]. Computing Tsh proceeds
by calculating the finish time for each job that is currently
running by estimating the iteration at which the job will be
terminated (thus Tsh is determined by the job that finishes last).
As before, we assume that the given allocation

�!
G lasts till app

completion. Since the estimations are usually probabilistic,
i.e., the iterations at which the job will converge has an error
bar, we over-estimate and use the most optimistic convergence
curve that results in the maximum forecasted completion time
for that job. As the job progresses, the estimates of the con-
vergence curve get more accurate and improves the accuracy
of the estimated finish time Tsh. The API implemented by
the hyper-parameter optimizer is simpler and only involves
getting a list of running jobs as shown in Figure 7.

We next present an end-to-end example of a multi-job app
showing our mechanism in action.
4.3.3 End-to-end Example.
We now run through a simple example that exercises the
various aspects of our API and the interfaces involved.

Consider a 16 GPU cluster and an ML app that has 4 ML
jobs and uses successive halving, running along with 3 other
ML apps in the same cluster. Each job in the app is tuning a
different hyper-parameter and the serial time taken per itera-
tion for the jobs are 80,100,100,120 seconds respectively.4
The total budget for the app is 10,000 seconds of GPU time
and we assume the job_demandmax is 8 GPUs and S(�!G) = 1.

Given we start with 4 ML jobs, the hyper-parameter op-
timizer divides this into 3 phases each having 4,2,1 jobs,
respectively. To evenly divide the budget across the phases,
the hyper-parameter optimizer budgets ⇡ 8,16,36 iterations
in each phase. First we calculate the Tid by considering the
budget, total cluster size, and cluster contention as: 10000⇥4

16 =
2500s.

Next, we consider the computation of Tsh assuming that 16

4The time per iteration depends on the nature of the hyper-parameter
being tuned. Some hyper-parameters like batch size or quantization used
affect the iteration time while others like learning rate don’t.

296 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

class JobInfo(int itersRemaining,

float avgTimePerIter,

float localitySensitivity);

// Successive Halving

List<JobInfo> getJobsInPhase(int phase,

List<Int> gpuAlloc);

int getNumPhases();

// Performance Curve

List<JobInfo> getJobsRemaining(List<Int> gpuAlloc);

Figure 7: API between AGENT and hyperparameter optimizer

||�!G ||1 0 1 2 4 8 16
r rold 4 2 1 0.5 0.34

Table 3: Example of bids submitted by AGENT

GPUs are offered by the ARBITER. The AGENT now computes
the bid for each subset of GPUs offered. Consider the case
with 2 GPUs. In this case in the first phase we have 4 jobs
which are serialized to run 2 at a time. This leads to Tsh(1) =
(120⇥8)+(80⇥8) = 1600 seconds. (Assume two 100s jobs
run serially on one GPU, and the 80 and 120s jobs run serially
on the other. Tsh is the time when the last job finishes.)

When we consider the next stage the hyper-parameter opti-
mizer currently does not know which jobs will be chosen for
termination. We use the median job (in terms of per-iteration
time) to estimate Tsh(i) for future phases. Thus, in the sec-
ond phase we have 2 jobs so we run one job on each GPU
each of which we assume to take the median 100 seconds
per iteration leading to Tsh(2) = (100⇥16) = 1600 seconds.
Finally for the last phase we have 1 job that uses 2 GPUs
and runs for 36 iterations leading to Tsh(3) =

(100⇥36)
2 = 1800

(again, the “median” jobs takes 100s per iteration). Thus Tsh =
1600+1600+1800 = 5000 seconds, making r = 5000

2500 = 2.
Note that since placement did not matter here we considered
any 2 GPUs being used. Similarly ignoring placement, the
bids for the other allocations are shown in Table 3.

We highlight a few more points about our example above.
If the jobs that are chosen for the next phase do not match
the median iteration time then the estimates are revised in the
next round of the auction. For example, if the jobs that are
chosen for the next round have iteration time 120,100 then the
above bid will be updated with Tsh(2) = (120⇥16) = 32005

and Tsh(3) =
(120⇥36)

2 = 2160. Further, we also see that the
job_demandmax = 8 means that the r value for 16 GPUs
does not linearly decrease from that of 8 GPUs.

5 Implementation
We implement THEMIS on top of a recent release of Apache
Hadoop YARN [1] (version 3.2.0) which includes, Subma-
rine [2], a new framework for running ML training jobs atop
YARN. We modify the Submarine client to support submitting
a group of ML training jobs as required by hyper-parameter
exploration apps. Once an app is submitted, it is managed by

5Because the two jobs run on one GPU each, and the 120s-per-iteration
job is the last to finish in the phase

a Submarine Application Master (AM) and we make changes
to the Submarine AM to implement the ML app scheduler
(we use Hyperband [21]) and our AGENT.

To prepare accurate bids, we implement a profiler in the
AM that parses TensorFlow logs, and tracks iteration times
and loss values for all the jobs in an app. The allocation of
a job changes over time and iteration times are used to ac-
curately estimate the placement preference (S) for different
GPU placements. Loss values are used in our Hyperband
implementation to determine early stopping. THEMIS’s AR-
BITER is implemented as a separate module in YARN RM.
We add gRPC-based interfaces between the AGENT and the
ARBITER to enable offers, bids, and final winning allocations.
Further, the ARBITER tracks GPU leases to offer reclaimed
GPUs as a part of the offers.

All the jobs we use in our evaluation are TensorFlow pro-
grams with configurable hyper-parameters. To handle allo-
cation changes at runtime, the programs checkpoint model
parameters to HDFS every few iterations. After a change in
allocation, they resume from the most recent checkpoint.

6 Evaluation
We evaluate THEMIS on a 64 GPU cluster and also use a
event-driven simulator to model a larger 256 GPU cluster. We
compare against other state-of-the-art ML schedulers. Our
evaluation shows the following key highlights -
• THEMIS is better than other schemes on finish-time fair-

ness while also offering better cluster efficiency (Figure 9-10-
11-12).

• THEMIS’s benefits compared to other schemes improve
with increasing fraction of placement sensitive apps and in-
creasing contention in the cluster, and these improvements
hold even with errors – random and strategic – in finish-time
fair metric estimations (Figure 14-18).

• THEMIS enables a trade-off between finish-time fairness
in the long-term and placement efficiency in the short-term.
Sensitivity analysis (Figure 19) using simulations show that
f = 0.8 and a lease time of 10 minutes gives maximum fair-
ness while also utilizing the cluster efficiently.

6.1 Experimental Setup
Testbed Setup. Our testbed is a 64 GPU, 20 machine cluster
on Microsoft Azure [23]. We use NC-series instances. We
have 8 NC12-series instances each with 2 Tesla K80 GPUs
and 12 NC24-series instances each with 4 Tesla K80 GPUs.
Simulator. We develop an event-based simulator to evaluate
THEMIS at large scale. The simulator assumes that estimates
of the loss function curves for jobs are known ahead of time so
as to predict the total number of iterations for the job. Unless
stated otherwise, all simulations are done on a heterogeneous
256 GPU cluster. Our simulator assumes a 4-level hierarchical
locality model for GPU placements. Individual GPUs fit onto

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 297

(a) CDF GPUs per job (b) CDF jobs per app
Figure 8: Details of 2 workloads used for evaluation of THEMIS

Model Type Dataset

10%

Inception-v3 [33] CV ImageNet [7]
AlexNet [20] CV ImageNet

ResNet50 [16] CV ImageNet
VGG16 [32] CV ImageNet
VGG19 [32] CV ImageNet

60%

Bi-Att-Flow [31] NLP SQuAD [28]
LangModel [41] NLP PTB [22]

GNMT [38] NLP WMT16 [37]
Transformer [35] NLP WMT16

30% WaveNet [25] Speech VCTK [40]
DeepSpeech [15] Speech CommonVoice [6]

Table 4: Models used in our trace.

slots on machines occupying different cluster racks.6

Workload. We experiment with 2 different traces that have
different workload characteristics in both the simulator and
the testbed - (i) Workload 1. A publicly available trace of
DNN training workloads at Microsoft [19,24]. We scale-down
the trace, using a two week snapshot and focus on subset
of jobs from the trace that correspond to hyper-parameter
exploration jobs triggered by Hyperdrive. (ii) Workload 2.
We use the app arrival times from Workload 1, generate jobs
per app using the successive halving pattern characteristic of
the Hyperband algorithm [21], and increase the number of
tasks per job compared to Workload 1. The distribution of
number of tasks per job and number of jobs per app for the
two workloads is shown in Figure 8.

The traces comprise of models from three categories - com-
puter vision (CV - 10%), natural language processing (NLP
- 60%) and speech (Speech - 30%). We use the same mix of
models for each category as outlined in Gandiva [39]. We
summarize the models in Table 4.
Baselines. We compare THEMIS against four state-of-the-art
ML schedulers - Gandiva [39], Tiresias [13], Optimus [27],
SLAQ [42]; these represent the best possible baselines for
maximizing efficiency, fairness, aggregate throughput, and ag-
gregate model quality, respectively. We also compare against
two scheduling disciplines - shortest remaining time first
(SRTF) and shortest remaining service first (SRSF) [13]; these
represent baselines for minimizing average job completion

6The heterogeneous cluster consists of 16 8-GPU machines (4 slots and
2 GPUs per slot), 6 4-GPU machines (4 slots and 1 GPU per slot), and 16
1-GPU machines

time (JCT) with efficiency as secondary concern and mini-
mizing average JCT with fairness as secondary concern, re-
spectively. We implement these baselines in our testbed as
well as the simulator as described below:
Ideal Efficiency Baseline - Gandiva. Gandiva improves
cluster utilization by packing jobs on as few machines as pos-
sible. In our implementation, Gandiva introspectively profiles
ML job execution to infer placement preferences and migrates
jobs to better meet these placement preferences. On any re-
source availability, all apps report their placement preferences
and we allocate resources in a greedy highest preference first
manner which has the effect of maximizing the average place-
ment preference across apps. We do not model time-slicing
and packing of GPUs as these system-level techniques can be
integrated with THEMIS as well and would benefit Gandiva
and THEMIS to equal extents.
Ideal Fairness Baseline - Tiresias. Tiresias defines a new
service metric for ML jobs – the aggregate GPU-time allo-
cated to each job – and allocates resources using the Least
Attained Service (LAS) policy so that all jobs obtain equal
service over time. In our implementation, on any resource
availability, all apps report their service metric and we allo-
cate the resource to apps that have the least GPU service.
Ideal Aggregate Throughput Baseline - Optimus. Opti-
mus proposes a throughput scaling metric for ML jobs – the
ratio of new job throughput to old job throughput with and
without an additional GPU allocation. On any resource avail-
ability, all apps report their throughput scaling and we allocate
resources in order of highest throughput scaling metric first.
Ideal Aggregate Model Quality - SLAQ. SLAQ proposes a
greedy scheme for improving aggregate model quality across
all jobs. In our implementation, on any resource availability
event, all apps report the decrease in loss value with allo-
cations from the available resources and we allocate these
resources in a greedy highest loss first manner.
Ideal Average App Completion Time - SRTF, SRSF. For
SRTF, on any resource availability, all apps report their re-
maining time with allocations from the available resource and
we allocate these resources using SRTF policy. Efficiency is
a secondary concern with SRTF as better packing of GPUs
leads to shorter remaining times.

SRSF is a service-based metric and approximates gittins
index policy from Tiresias. In our implementation, we as-
sume accurate knowledge of remaining service and all apps
report their remaining service and we allocate one GPU at
a time using SRSF policy. Fairness is a secondary concern
as shorter service apps are preferred first as longer apps are
more amenable to make up for lost progress due to short-term
unfair allocations.
Metrics. We use a variety of metrics to evaluate THEMIS.

(i) Finish-time fairness: We evaluate the fairness of
schemes by looking at the finish-time fair metric (r) distribu-
tion and the maximum value across apps. A tighter distribu-
tion and a lower value of maximum value of r across apps

298 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: [TESTBED] Comparison of finish-time fairness across schedulers
with Workload 1

Figure 10: [TESTBED] Comparison of finish-time fairness across schedulers
with Workload 2

ThemisGandiva SLAQ Tiresias SRTF SRSF Optimus0

200

400

600

800

1000

1200

G
PU

 T
im

e
(h

ou
rs

)

Figure 11: [TESTBED] Comparison of total GPU times across schemes with
Workload 1. Lower GPU time indicates better utilization of the GPU cluster

indicate higher fairness. (ii) GPU Time: We use GPU Time

as a measure of how efficiently the cluster is utilized. For two
scheduling schemes S1 and S2 that have GPU times G1 and
G2 for executing the same amount of work, S1 utilizes the
cluster more efficiently than S2 if G1 < G2. (iii) Placement
Score: We give each allocation a placement score (1). This
is inversely proportional to slowdown, S , that app experiences
due to this allocation. The slowdown is dependent on the ML
app properties and the network interconnects between the
allocated GPUs. A placement score of 1.0 is desirable for as
many apps as possible.

6.2 Macrobenchmarks
In our testbed, we evaluate THEMIS against all baselines on
all the workloads. We set the fairness knob value f as 0.8
and lease as 10 minutes, which is informed by our sensitivity
analysis results in Section 6.4.

Figure 9-10 shows the distribution of finish-time fairness
metric, r, across apps for THEMIS and all the baselines. We
see that THEMIS has a narrower distribution for the r values
which means that THEMIS comes closest to giving all jobs an
equal sharing incentive. Also, THEMIS gives 2.2X to 3.25X

better (smaller) maximum r values compared to all baselines.
Figure 11-12 shows a comparison of the efficiency in terms

of the aggregate GPU time to execute the complete workload.
Workload 1 has similar efficiency across THEMIS and the

ThemisGandiva SLAQ Tiresias SRTF SRSF Optimus0
200
400
600
800

1000
1200
1400

G
PU

 T
im

e
(h

ou
rs

)

Figure 12: [TESTBED] Comparison of total GPU times across schemes with
Workload 2. Lower GPU time indicates better utilization of the GPU cluster

Job Type GPU Time # GPUs rTHEMIS rTiresias

Long Job ~580 mins 4 ~1 ~0.9
Short Job ~83 mins 2 ~1.2 ~1.9

Table 5: [TESTBED] Details of 2 jobs to understand the benefits of THEMIS

0.5 0.6 0.7 0.8 0.9 1.0
Placement Score

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

of
 a

llo
ca

tio
ns

Themis
Gandiva
SLAQ
Tiresias

SRTF
SRSF
Optimus

Figure 13: [TESTBED] CDF of place-
ment scores across schemes

Figure 14: [TESTBED] Impact of
contention on finish-time fairness

baselines as all jobs are either 1 or 2 GPU jobs and almost
all allocations, irrespective of the scheme, end up as efficient.
With workload 2, THEMIS betters Gandiva by ~4.8% and out-
performs SLAQ by ~250%. THEMIS is better because global
visibility of app placement preferences due to the auction
abstraction enables globally optimal decisions. Gandiva in
contrast takes greedy locally optimal packing decisions.
6.2.1 Sources of Improvement
In this section, we deep-dive into the reasons behind the wins
in fairness and cluster efficiency in THEMIS.

Table 5 compares the finish-time fair metric value for a
pair of short- and long-lived apps from our testbed run for
THEMIS and Tiresias. THEMIS offers better sharing incentive
for both the short and long apps. THEMIS induces altruistic
behavior in long apps. We attribute this to our choice of r
metric. With less than ideal allocations, even though long
apps see an increase in Tsh, their r values do not increase
drastically because of a higher Tid value in the denominator.
Whereas, shorter apps see a much more drastic degradation,
and our round-by-round filtering of farthest-from-finish-time
fairness apps causes shorter apps to participate in auctions
more often. Tiresias offers poor sharing incentive for short
apps as it treats short- and long-apps as the same. This only
worsens the sharing incentive for short apps.

Figure 13 shows the distribution of placement scores for
all the schedulers. THEMIS gives the best placement scores
(closer to 1.0 is better) in workload 2, with Gandiva and Opti-
mus coming closest. Workload 1 has jobs with very low GPU
demand and almost all allocations have a placement score of 1
irrespective of the scheme. Other schemes are poor as they do
not account for placement preferences. Gandiva does greedy
local packing and Optimus does greedy throughput scaling
and are not as efficient because they are not globally optimal.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 299

6.2.2 Effect of Contention
In this section, we analyze the effect of contention on finish-
time fairness. We decrease the size of the cluster to half and
quarter the original size to induce a contention of 2X and
4X respectively. Figure 14 shows the change in max value
of r as the contention changes with workload 1. THEMIS
is the only scheme that maintains sharing incentive even in
high contention scenarios. SRSF comes close as it preferably
allocates resources to shorter service apps. This behavior is
similar to that in THEMIS. THEMIS induces altruistic shedding
of resources by longer apps (Section 6.2.1), giving shorter
apps a preference in allocations during higher contention.
6.2.3 Systems Overheads
From our profiling of the experiments above, we find that
each AGENT spends 29 (334) milliseconds to compute bids at
the median (95-%). The 95 percentile is high because enumer-
ation of possible bids needs to traverse a larger search space
when the number of resources up for auction is high.

The ARBITER uses Gurobi [14] to compute partial allo-
cation of resources to apps based on bids. This computation
takes 354 (1398) milliseconds at the median (95-%ile). The
high tail is once again observed when both the number of
offered resources and the number of apps bidding are high.
However, the time is small relative to lease time. The net-
work overhead for communication between the ARBITER
and individual apps is negligible since we use the existing
mechanisms used by Apache YARN.

Upon receiving new resource allocations, the AGENT
changes (adds/removes) the number of GPU containers avail-
able to its app. This change takes about 35 (50) seconds at
the median (95-%ile), i.e., an overhead of 0.2% (2%) of the
app duration at the median (95-%ile). Prior to relinquishing
control over its resources, each application must checkpoint
its set of parameters. We find that that this is model dependent
but takes about 5-10 seconds on an average and is driven
largely by the overhead of check-pointing to HDFS.

6.3 Microbenchmarks
Placement Preferences: We analyze the impact on finish-
time fairness and cluster efficiency as the fraction of network-
intensive apps in our workload increases. We synthetically
construct 6 workloads and vary the percentage of network-
intensive apps in these workloads from 0%-100%.

From Figure 15, we notice that sharing incentive degrades
most when there is a heterogeneous mix of compute and net-
work intensive apps (at 40% and 60%). THEMIS has a max r
value closest to 1 across all scenarios and is the only scheme to
ensure sharing incentive. When the workload consists solely
of network-intensive apps, THEMIS performs ~1.24 to 1.77X

better than existing baselines on max fairness.
Figure 16 captures the impact on cluster efficiency. With

only compute-intensive apps, all scheduling schemes utilize
the cluster equally efficiently. As the percentage of network
intensive apps increases, THEMIS has lower GPU times to exe-

0 20 40 60 80 100
% Network Intensive Apps

0

2

4

6

8

10

M
ax

 F
ai

rn
es

s Themis
Gandiva
SLAQ
Tiresias

SRTF
SRSF
Optimus

Figure 15: [SIMULATOR] Impact of placement preferences for varying mix
of compute- and network-intensive apps on max r

0 20 40 60 80 100
% Network Intensive Apps

0
200
400
600
800

1000
1200
1400
1600

G
PU

 T
im

e
(h

ou
rs

)

Themis
Gandiva
SLAQ
Tiresias

SRTF
SRSF
Optimus

Figure 16: [SIMULATOR] Impact of placement preferences for varying mix
of compute- and network-intensive apps on GPU Time

cute the same workload. This means that THEMIS utilizes the
cluster more efficiently than other schemes. In the workload
with 100% network-intensive apps, THEMIS performs ~8.1%
better than Gandiva (state-of-the-art for cluster efficiency).
Error Analysis: Here, we evaluate the ability of THEMIS to
handle errors in estimation of number of iterations and the
slowdown (S). For this experiment, we assume that all apps
are equally susceptible to making errors in estimation. The
percentage error is sampled at random from [-X , X] range for
each app. Figure 17 shows the changes in max finish-time
fairness as we vary X . Even with X = 20%, the change in
max finish-time fairness is just 10.76% and is not significant.
Truth-Telling: To evaluate strategy-proofness, we use sim-
ulations. We use a cluster of 64 GPUs with 8 identical apps
with equivalent placement preferences. The cluster has a sin-
gle 8 GPU machine and the others are all 2 GPU machines.
The most preferred allocation in this cluster is the 8 GPU ma-
chine. We assume that there is a single strategically lying app
and 7 truthful apps. In every round of auction it participates
in, the lying app over-reports the slowdown with staggered
machine placement or under-reports the slowdown with dense
machine placement by X%. Such a strategy would ensure
higher likelihood of winning the 8 GPU machine. We vary the
value of X in the range [0,100] and analyze the lying app’s
completion time and the average app completion time of the
truthful apps in Figure 18. We see that at first the lying app
does not experience any decrease in its own app completion
time. On the other hand, we see that the truthful apps do better
on their average app completion time. This is because the hid-
den payment from the partial allocation mechanism in each
round of the auction for the lying app remains the same while

300 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0% 5% 10% 20%
% error in bid valuations

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
ax

. F
ai

rn
es

s

Figure 17: [SIMULATOR] Impact of
error in bid values on max fairness

Figure 18: [SIMULATOR] Strategic
lying is detrimental

(a) Impact on Max Fairness (b) Impact on GPU Time
Figure 19: [SIMULATOR] Sensitivity of fairness knob and lease time.

the payment from the rest of the apps keeps decreasing. We
also observe that there is a sudden tipping point at X > 34%.
At this point, there is a sudden increase in the hidden payment
for the lying app and it loses a big chunk of resources to other
apps. In essence, THEMIS incentivizes truth-telling.

6.4 Sensitivity Analysis
We use simulations to study THEMIS’s sensitivity to fairness
knob f and the lease time. Figure 19 (a) shows the impact
on max r as we vary the fairness knob f . We observe that
filtering (1� f) fraction of apps helps with ensuring better
sharing incentive. As f increases from 0 to 0.8, we observe
that fairness improves. Beyond f = 0.8, max fairness wors-
ens by around a factor of 1.5X . We see that the quality of
sharing incentive, captured by max r, degrades at f = 1 be-
cause we observe that only a single app with highest r value
participates in the auction. This app is forced sub-optimal
allocations because of poor placement of available resources
with respect to the already allocated resources in this app. We
also observe that smaller lease times promote better fairness
since frequently filtering apps reduces the time that queued
apps wait for an allocation.

Figure 19 (b) shows the impact on the efficiency of cluster
usage as we vary the fairness knob f . We observe that the ef-
ficiency decreases as the value of f increases. This is because
the number of apps that can bid for an offer reduces as we
increase f leading to fewer opportunities for the ARBITER to
pack jobs efficiently. Lower lease values mean than models
need to be check-pointed more often (GPUs are released on
lease expiry) and hence higher lease values are more efficient.

Thus we choose f = 0.8 and lease = 10 minutes.

7 Related Work
Cluster scheduling for ML workloads has been targeted by a
number of recent works including SLAQ [42], Gandiva [39],
Tiresias [13] and Optimus [27]. These systems target different

objectives and we compare against them in Section 6.
We build on rich literature on cluster scheduling disci-

plines [8, 10–12] and two level schedulers [17, 30, 36]. While
those disciplines/schedulers don’t apply to our problem, we
build upon some of their ideas, e.g., resource offers in [17].
Sharing incentive was outlined by DRF [8], but we focus on
long term fairness with our finish-time metric. Tetris [10]
proposes resource-aware packing with an option to trade-
off for fairness using multi-dimensional bin-packing as the
mechanism for achieving that. In THEMIS, we instead focus
on fairness with an option to trade-off for placement-aware
packing, and use auctions as our mechanism.

Some earlier schemes [11,12] also attempted to emulate the
long term effects of fair allocation. Around occasional barri-
ers, unused resources are re-allocated across jobs. THEMIS dif-
fers in many respects: First, earlier systems focus on batch ana-
lytics. Second, earlier schemes rely on instantaneous resource-
fairness (akin to DRF), which has issues with placement-
preference unawareness and not accounting for long tasks.
Third, in the ML context there are no occasional barriers.
While barriers do arise due to synchronization of parameters
in ML jobs, they happen at every iteration. Also, resources
unilaterally given up by a job may not be usable by another
job due to placement preferences.

8 Conclusion
In this paper we presented THEMIS, a fair scheduling frame-
work for ML training workloads. We showed how existing
fair allocation schemes are insufficient to handle long-running
tasks and placement preferences of ML workloads. To address
these challenges we proposed a new long term fairness ob-
jective in finish-time fairness. We then presented a two-level
semi-optimistic scheduling architecture where ML apps can
bid on resources offered in an auction. Our experiments show
that THEMIS can improve fairness and efficiency compared
to state of the art schedulers.
Acknowledgements. We are indebted to Varun Batra and
Surya Teja Chavali for early discussions and helping with
cluster management. We thank the Azure University Grant
for their generous support in providing us the GPU resources
used for experiments in this paper. We also thank Jim Jerni-
gan for sharing his insights on running large GPU clusters
at Microsoft. Finally, we thank the reviewers and our shep-
herd Manya Ghobadi. This work is supported by the National
Science Foundation (grants CNS-1838733, CNS-1763810,
CNS-1563095, CNS-1617773, and CCF-1617505). Shivaram
Venkataraman is also supported by a Facebook faculty re-
search award and support for this research was also provided
by the Office of the Vice Chancellor for Research and Gradu-
ate Education at the University of Wisconsin, Madison with
funding from the Wisconsin Alumni Research Foundation.
Aditya Akella is also supported by a Google faculty research
award, a Facebook faculty research award, and H. I. Romnes
Faculty Fellowship.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 301

References
[1] Apache Hadoop NextGen MapReduce (YARN).

Retrieved 9/24/2013, URL: http://hadoop.

apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/YARN.html, 2013.

[2] Apache Hadoop Submarine. https://hadoop.

apache.org/submarine/, 2019.

[3] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D.
Cox. Hyperopt: a python library for model selection and
hyperparameter optimization. Computational Science

& Discovery, 8(1), 2015.

[4] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint

arXiv:1604.00981, 2016.

[5] R. Cole, V. Gkatzelis, and G. Goel. Mechanism de-
sign for fair division: allocating divisible items without
payments. In Proceedings of the fourteenth ACM con-

ference on Electronic commerce, pages 251–268. ACM,
2013.

[6] Common Voice Dataset. https://voice.mozilla.

org/.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee,
2009.

[8] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In NSDI,
2011.

[9] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro,
and D. Sculley. Google vizier: A service for black-box
optimization. In KDD, 2017.

[10] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-resource packing for cluster sched-
ulers. ACM SIGCOMM Computer Communication Re-

view, 44(4):455–466, 2015.

[11] R. Grandl, M. Chowdhury, A. Akella, and G. Anantha-
narayanan. Altruistic scheduling in multi-resource clus-
ters. In 12th {USENIX} Symposium on Operating Sys-

tems Design and Implementation ({OSDI} 16), pages
65–80, 2016.

[12] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-
rni. GRAPHENE: Packing and Dependency-Aware
Scheduling for Data-Parallel Clusters. In 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 81–97, 2016.

[13] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo. Tiresias: A {GPU} clus-
ter manager for distributed deep learning. In 16th

{USENIX} Symposium on Networked Systems Design

and Implementation ({NSDI} 19), pages 485–500, 2019.

[14] Gurobi Optimization. http://www.gurobi.com/.

[15] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567,
2014.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pages 770–778, 2016.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Tal-
war, and A. Goldberg. Quincy: fair scheduling for dis-
tributed computing clusters. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems princi-

ples, pages 261–276. ACM, 2009.

[19] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of Large-Scale Multi-
Tenant GPU Clusters for DNN Training Workloads. In
USENIX ATC, 2019.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pages 1097–1105, 2012.

[21] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and
A. Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. arXiv preprint

arXiv:1603.06560, 2016.

[22] M. Marcus, B. Santorini, and M. A. Marcinkiewicz.
Building a large annotated corpus of english: The penn
treebank. 1993.

[23] Microsoft Azure. https://azure.microsoft.com/

en-us/.

[24] Microsoft Philly Trace. https://github.com/

msr-fiddle/philly-traces, 2019.

[25] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

302 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[26] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: distributed, low latency scheduling. In SOSP,
pages 69–84, 2013.

[27] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Optimus:
an efficient dynamic resource scheduler for deep learn-
ing clusters. In Proceedings of the Thirteenth EuroSys

Conference, page 3. ACM, 2018.

[28] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

[29] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca. Hy-
perdrive: Exploring hyperparameters with pop schedul-
ing. In Proceedings of the 18th ACM/IFIP/USENIX

Middleware Conference, pages 1–13. ACM, 2017.

[30] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large
compute clusters. In Eurosys, 2013.

[31] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi.
Bidirectional attention flow for machine comprehension.
arXiv preprint arXiv:1611.01603, 2016.

[32] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-
jna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 2818–2826,
2016.

[34] H. R. Varian. Equity, envy, and efficiency. Journal of

Economic Theory, 9(1):63 – 91, 1974.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in neural infor-

mation processing systems, pages 5998–6008, 2017.

[36] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at google with borg. In Eurosys, 2015.

[37] WMT16 Dataset. http://www.statmt.org/wmt16/.

[38] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
et al. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[39] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang,
et al. Gandiva: Introspective cluster scheduling for deep

learning. In 13th {USENIX} Symposium on Operat-

ing Systems Design and Implementation ({OSDI} 18),
pages 595–610, 2018.

[40] J. Yamagishi. English multi-speaker corpus for cstr
voice cloning toolkit. URL http://homepages. inf. ed. ac.

uk/jyamagis/page3/page58/page58. html, 2012.

[41] W. Zaremba, I. Sutskever, and O. Vinyals. Recur-
rent neural network regularization. arXiv preprint

arXiv:1409.2329, 2014.

[42] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq:
quality-driven scheduling for distributed machine learn-
ing. In Proceedings of the 2017 Symposium on Cloud

Computing, pages 390–404. ACM, 2017.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 303

A Appendix
PROOF OF THEOREM 3.1. Examples in Figure 5 and Sec-
tion 3.1.2 shows that DRF violates SI, EF, and PE. Same
examples hold true for LAS policy in Tiresias. The service
metric i.e. the GPU in Instance 1 and Instance 2 is the same
for A1 and A2 in terms of LAS and is deemed a fair allocation
over time. However, Instance 1 violates SI as A1 (VGG16)
and A2 (VGG16) would prefer there own independent GPUs
and Instance 2 violates EF and PE as A2 (VGG16) prefers
the allocation of A1 (Inception-v3) and PE as the optimal
allocation after taking into account placement preferences
would interchange the allocation of A1 and A2.

PROOF OF THEOREM 3.2. We first show that the valuation
function, r(.), for the case of ML jobs is homogeneous. This
means that r(.) has the following property: r(m⇤�!G) = m⇤
r�!G .

Consider a job with GPUs spread across a set of some
M machines. If we keep this set of machines the same, and
increase the number of GPUs allocated on these same set of
machines by a certain factor then the shared running time (Tsh)
of this job decreases proportionally by the same factor. This is
so because the slowdown, S remains the same. Slowdown is
determined by the slowest network interconnect between the
machines. The increased allocation does not change the set
of machines M. The independent running time (Tid) remains
the same. This means that r also proportionally changes by
the same factor.

Given, homogeneous valuation functions, the PA mecha-
nism guarantees SP, PE and EF [5]. However, PA violates SI
due to the presence of hidden payments. This also make PA
not work-conserving.

PROOF OF THEOREM 3.3. With multi-round auctions we
ensure truth-telling of r estimates in the visibility phase. This
is done by the AGENT by using the cached r(.) estimates from
the last auction the app participated in. In case an app gets
leftover allocations from the leftover allocation mechanism,
the AGENT updates the r estimate again by using the cached
r(.) table. In this way we guarantee SP with multi-round
auctions.

As we saw in Theorem 3.2, an auction ensures PE and
EF. In each round, we allocate all available resources using
auctions. This ensures end-to-end PE and EF.

For maximizing sharing incentive, we always take a frac-
tion 1� f of apps in each round. A wise choice of f ensures
that we filter in all the apps with r > 1 that have poor sharing
incentive. We only auction the resources to such apps which
maximizes sharing incentive.

304 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

