
Breaking Locality Accelerates Block Gauss-Seidel

Stephen Tu 1 Shivaram Venkataraman 1 Ashia C. Wilson 1 Alex Gittens 2 Michael I. Jordan 1 Benjamin Recht 1

Abstract
Recent work by Nesterov and Stich (2016)
showed that momentum can be used to accel-
erate the rate of convergence for block Gauss-
Seidel in the setting where a fixed partition-
ing of the coordinates is chosen ahead of time.
We show that this setting is too restrictive, con-
structing instances where breaking locality by
running non-accelerated Gauss-Seidel with ran-
domly sampled coordinates substantially outper-
forms accelerated Gauss-Seidel with any fixed
partitioning. Motivated by this finding, we an-
alyze the accelerated block Gauss-Seidel algo-
rithm in the random coordinate sampling set-
ting. Our analysis captures the benefit of ac-
celeration with a new data-dependent parame-
ter which is well behaved when the matrix sub-
blocks are well-conditioned. Empirically, we
show that accelerated Gauss-Seidel with random
coordinate sampling provides speedups for large
scale machine learning tasks when compared to
non-accelerated Gauss-Seidel and the classical
conjugate-gradient algorithm.

1. Introduction
The randomized Gauss-Seidel method is a commonly used
iterative algorithm to compute the solution of an n× n lin-
ear system Ax = b by updating a single coordinate at a
time in a randomized order. While this approach is known
to converge linearly to the true solution when A is positive
definite (see e.g. (Leventhal & Lewis, 2010)), in practice
it is often more efficient to update a small block of coordi-
nates at a time due to the effects of cache locality.

In extending randomized Gauss-Seidel to the block setting,
a natural question that arises is how one should sample the
next block. At one extreme a fixed partition of the coordi-

1UC Berkeley, Berkeley, California, USA 2Rensselaer Poly-
technic Institute, Troy, New York, USA. Correspondence to:
Stephen Tu <stephent@berkeley.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

nates is chosen ahead of time. The algorithm is restricted
to randomly selecting blocks from this fixed partitioning,
thus favoring data locality. At the other extreme we break
locality by sampling a new set of random coordinates to
form a block at every iteration.

Theoretically, the fixed partition case is well understood
both for Gauss-Seidel (Qu et al., 2015; Gower & Richtárik,
2015) and its Nesterov accelerated variant (Nesterov &
Stich, 2016). More specifically, at most O(µ−1

part log(1/ε))
iterations of Gauss-Seidel are sufficient to reach a solution
with at most ε error, where µpart is a quantity which mea-
sures how well the A matrix is preconditioned by the block
diagonal matrix containing the sub-blocks corresponding
to the fixed partitioning. When acceleration is used, Nes-
terov and Stich (2016) show that the rate improves to
O
(√

n
pµ
−1
part log(1/ε)

)
, where p is the partition size.

For the random coordinate selection model, the existing
literature is less complete. While it is known (Qu et al.,
2015; Gower & Richtárik, 2015) that the iteration complex-
ity with random coordinate section is O(µ−1

rand log(1/ε))
for an ε error solution, µrand is another instance dependent
quantity which is not directly comparable to µpart. Hence
it is not obvious how much better, if at all, one expects
random coordinate selection to perform compared to fixed
partitioning.

Our first contribution in this paper is to show that, when
compared to the random coordinate selection model, the
fixed partition model can perform very poorly in terms of
iteration complexity to reach a pre-specified error. Specifi-
cally, we present a family of instances (similar to the matri-
ces recently studied by Lee and Wright (2016)) where non-
accelerated Gauss-Seidel with random coordinate selection
performs arbitrarily faster than both non-accelerated and
even accelerated Gauss-Seidel, using any fixed partition.
Our result thus shows the importance of the sampling strat-
egy and that acceleration cannot make up for a poor choice
of sampling distribution.

This finding motivates us to further study the benefits of
acceleration under the random coordinate selection model.
Interestingly, the benefits are more nuanced under this
model. We show that acceleration improves the rate from

O(µ−1
rand log(1/ε)) to O

(√
νµ−1

rand log(1/ε)

)
, where ν is

Breaking Locality Accelerates Block Gauss-Seidel

a new instance dependent quantity that satisfies ν ≤ µ−1
rand.

We derive a bound on ν which suggests that if the sub-
blocks of A are all well conditioned, then acceleration can
provide substantial speedups. We note that this is merely a
sufficient condition, and our experiments suggest that our
bound is conservative.

In the process of deriving our results, we also develop a
general proof framework for randomized accelerated meth-
ods based on Wilson et al. (2016) which avoids the use of
estimate sequences in favor of an explicit Lyapunov func-
tion. Using our proof framework we are able to recover
recent results (Nesterov & Stich, 2016; Allen-Zhu et al.,
2016) on accelerated coordinate descent. Furthermore, our
proof framework allows us to immediately transfer our re-
sults on Gauss-Seidel over to the randomized accelerated
Kaczmarz algorithm, extending a recent result by Liu and
Wright (2016) on updating a single constraint at a time to
the block case.

Finally, we empirically demonstrate that despite its theoret-
ical nuances, accelerated Gauss-Seidel using random coor-
dinate selection can provide significant speedups in prac-
tical applications over Gauss-Seidel with fixed partition
sampling, as well as the classical conjugate-gradient (CG)
algorithm. As an example, for a kernel ridge regression
(KRR) task in machine learning on the augmented CIFAR-
10 dataset (n = 250, 000), acceleration with random coor-
dinate sampling performs up to 1.5× faster than accelera-
tion with a fixed partitioning to reach an error tolerance of
10−2, with the gap substantially widening for smaller error
tolerances. Furthermore, it performs over 3.5× faster than
conjugate-gradient on the same task.

2. Background
We assume that we are given an n × n matrix A which is
positive definite, and an n dimensional response vector b.
We also fix an integer p which denotes a block size. Under
the assumption of A being positive definite, the function
f(x) = 1

2x
TAx− xTb is strongly convex and smooth. Re-

cent analysis of Gauss-Seidel (Gower & Richtárik, 2015)
proceeds by noting the connection between Gauss-Seidel
and (block) coordinate descent on f . This is the point of
view we will take in this paper.

2.1. Existing rates for randomized block Gauss-Seidel

We first describe the sketching framework of (Qu et al.,
2015; Gower & Richtárik, 2015) and show how it yields
rates on Gauss-Seidel when blocks are chosen via a fixed
partition or randomly at every iteration. While we will only
focus on the special case when the sketch matrix represents
column sampling, the sketching framework allows us to
provide a unified analysis of both cases.

To be more precise, let D be a distribution over Rn×p, and
let Sk ∼ D be drawn iid from D. If we perform block
coordinate descent by minimizing f along the range of Sk,
then the randomized block Gauss-Seidel update is given by

xk+1 = xk − Sk(ST
kASk)†ST

k (Axk − b) . (1)

Column sampling. Every index set J ⊆ 2[n] with |J | =
p induces a sketching matrix S(J) = (eJ(1), ..., eJ(p))
where ei denotes the i-th standard basis vector in Rn,
and J(1), ..., J(p) is any ordering of the elements of J .
By equipping different probability measures on 2[n], one
can easily describe fixed partition sampling as well as
random coordinate sampling (and many other sampling
schemes). The former puts uniform mass on the index sets
J1, ..., Jn/p, whereas the latter puts uniform mass on all

(
n
p

)
index sets of size p. Furthermore, in the sketching frame-
work there is no limitation to use a uniform distribution,
nor is there any limitation to use a fixed p for every itera-
tion. For this paper, however, we will restrict our attention
to these cases.

Existing rates. Under the assumptions stated above, (Qu
et al., 2015; Gower & Richtárik, 2015) show that for every
k ≥ 0, the sequence (1) satisfies

E[‖xk − x∗‖A] ≤ (1− µ)k/2‖x0 − x∗‖A , (2)

where µ = λmin(E[PA1/2S]). The expectation in (2) is
taken with respect to the randomness of S0, S1, ..., and the
expectation in the definition of µ is taken with respect to
S ∼ D. Under both fixed partitioning and random coor-
dinate selection, µ > 0 is guaranteed (see e.g. (Gower &
Richtárik, 2015), Lemma 4.3). Thus, (1) achieves a linear
rate of convergence to the true solution, with the rate gov-
erned by the µ quantity shown above.

We now specialize (2) to fixed partitioning and random co-
ordinate sampling, and provide some intuition for why we
expect the latter to outperform the former in terms of it-
eration complexity. We first consider the case when the
sampling distribution corresponds to fixed partitioning. As-
sume for notational convenience that the fixed partitioning
corresponds to placing the first p coordinates in the first
partition J1, the next p coordinates in the second partition
J2, and so on. Here, µ = µpart corresponds to a measure
of how close the product of A with the inverse of the block
diagonal is to the identity matrix, defined as

µpart =
p

n
λmin

(
A · blkdiag

(
A−1
J1
, ..., A−1

Jn/p

))
. (3)

Above, AJi denotes the p × p matrix corresponding to the
sub-matrix ofA indexed by the i-th partition. A loose lower
bound on µpart is

µpart ≥
p

n

λmin(A)

max1≤i≤n/p λmax(AJi)
. (4)

Breaking Locality Accelerates Block Gauss-Seidel

On the other hand, in the random coordinate case, Qu et
al. (2015) derive a lower bound on µ = µrand as

µrand ≥
p

n

(
β + (1− β)

max1≤i≤nAii
λmin(A)

)−1

, (5)

where β = (p− 1)/(n− 1). Using the lower bounds
(4) and (5), we can upper bound the iteration com-
plexity of fixed partition Gauss-Seidel Npart by

O
(
n
p

max1≤i≤n/p λmax(AJi)

λmin(A) log(1/ε)
)

and random coordi-

nate Gauss-Seidel Nrand as O
(
n
p

max1≤i≤n Aii
λmin(A) log(1/ε)

)
.

Comparing the bound on Npart to the bound on Nrand,
it is not unreasonable to expect that random coordinate
sampling has better iteration complexity than fixed par-
tition sampling in certain cases. In Section 3, we verify
this by constructing instances A such that fixed partition
Gauss-Seidel takes arbitrarily more iterations to reach
a pre-specified error tolerance compared with random
coordinate Gauss-Seidel.

2.2. Accelerated rates for fixed partition Gauss-Seidel

Based on the interpretation of Gauss-Seidel as block coor-
dinate descent on the function f , we can use Theorem 1 of
Nesterov and Stich (2016) to recover a procedure and a rate
for accelerating (1) in the fixed partition case; the specific
details are discussed in Section A.4.3 of the appendix. We
will refer to this procedure as ACDM.

The convergence guarantee of the ACDM procedure is that
for all k ≥ 0,

E[‖xk − x∗‖A] ≤ O
((

1−
√
p

n
µpart

)k/2
D0

)
. (6)

Above, D0 = ‖x0 − x∗‖A and µpart is the same quan-
tity defined in (3). Comparing (6) to the non-accelerated
Gauss-Seidel rate given in (2), we see that acceleration im-
proves the iteration complexity to reach a solution with ε
error from O(µ−1

part log(1/ε)) to O
(√

n
pµ
−1
part log(1/ε)

)
,

as discussed in Section 1.

3. Results
We now present the main results of the paper. All proofs
are deferred to the appendix.

3.1. Fixed partition vs random coordinate sampling

Our first result is to construct instances where Gauss-Seidel
with fixed partition sampling runs arbitrarily slower than
random coordinate sampling, even if acceleration is used.

Consider the particular family of n × n positive definite
matrices A given by A = {Aα,β : α > 0, α + β > 0}

with Aα,β defined as Aα,β = αI + β
n1n1

T
n. The family

A exhibits a crucial property that ΠTAα,βΠ = Aα,β for
every n× n permutation matrix Π. Lee and Wright (2016)
recently exploited this invariance to illustrate the behavior
of cyclic versus randomized permutations in coordinate de-
scent.

We explore the behavior of Gauss-Seidel as the matrices
Aα,β become ill-conditioned. To do this, we consider a par-
ticular parameterization which holds the minimum eigen-
value equal to one and sends the maximum eigenvalue to
infinity via the sub-family {A1,β}β>0. Our first proposi-
tion characterizes the behavior of Gauss-Seidel with fixed
partitions on this sub-family.

Proposition 3.1. Fix β > 0 and positive integers n, p, k
such that n = pk. Let {Ji}ki=1 be any partition of {1, ..., n}
with |Ji| = p, and denote Si ∈ Rn×p as the column selec-
tor for partition Ji. Suppose S ∈ Rn×p takes on value Si
with probability 1/k. For every A1,β ∈ A we have that

µpart =
p

n+ βp
. (7)

Next, we perform a similar calculation under the random
column sampling model.

Proposition 3.2. Fix β > 0 and integers n, p such that
1 < p < n. Suppose each column of S ∈ Rn×p is cho-
sen uniformly at random from {e1, ..., en} without replace-
ment. For every A1,β ∈ A we have that

µrand =
p

n+ βp
+

(p− 1)βp

(n− 1)(n+ βp)
. (8)

The differences between (7) and (8) are striking. Let us
assume that β is much larger than n. Then, we have that
µpart ≈ 1/β for (7), whereas µrand ≈ p−1

n−1 for (8). That
is, µpart can be made arbitrarily smaller than µrand as β
grows.

Our next proposition states that the rate of Gauss-Seidel
from (2) is tight order-wise in that for any instance there
always exists a starting point which saturates the bound.

Proposition 3.3. Let A be an n × n positive definite
matrix, and let S be a random matrix such that µ =
λmin(E[PA1/2S]) > 0. Let x∗ denote the solution to
Ax = b. There exists a starting point x0 ∈ Rn such that
the sequence (1) satisfies for all k ≥ 0,

E[‖xk − x∗‖A] ≥ (1− µ)k‖x0 − x∗‖A . (9)

From (2) we see that Gauss-Seidel using random co-
ordinates computes a solution xk satisfying E[‖xk −
x∗‖A1,β

] ≤ ε in at most k = O(np log(1/ε)) iterations. On
the other hand, Proposition 3.3 states that for any fixed par-
tition, there exists an input x0 such that k = Ω(β log(1/ε))

Breaking Locality Accelerates Block Gauss-Seidel

iterations are required to reach the same ε error tolerance.
Furthermore, the situation does not improve even if use
ACDM from (Nesterov & Stich, 2016). Proposition 3.6,
which we describe later, implies that for any fixed partition
there exists an input x0 such that k = Ω

(√
n
pβ log(1/ε)

)
iterations are required for ACDM to reach ε error. Hence
as β −→∞, the gap between random coordinate and fixed
partitioning can be made arbitrarily large. These findings
are numerically verified in Section 5.1.

3.2. A Lyapunov analysis of accelerated Gauss-Seidel
and Kaczmarz

Motivated by our findings, our goal is to understand the
behavior of accelerated Gauss-Seidel under random coor-
dinate sampling. In order to do this, we establish a general
framework from which the behavior of accelerated Gauss-
Seidel with random coordinate sampling follows immedi-
ately, along with rates for accelerated randomized Kacz-
marz (Liu & Wright, 2016) and the accelerated coordinate
descent methods of (Nesterov & Stich, 2016) and (Allen-
Zhu et al., 2016).

For conciseness, we describe a simpler version of our
framework which is still able to capture both the Gauss-
Seidel and Kaczmarz results, deferring the general version
to Section A.3 of the appendix. Our general result requires
a bit more notation, but follows the same line of reasoning.

Let H be a random n × n positive semi-definite matrix.
Put G = E[H], and suppose that G exists and is positive
definite. Furthermore, let f : Rn −→ R be strongly convex
and smooth, and let µ denote the strong convexity constant
of f w.r.t. the ‖·‖G−1 norm.

Consider the following sequence {(xk, yk, zk)}k≥0 defined
by the recurrence

xk+1 =
1

1 + τ
yk +

τ

1 + τ
zk , (10a)

yk+1 = xk+1 −Hk∇f(xk+1) , (10b)

zk+1 = zk + τ(xk+1 − zk)− τ

µ
Hk∇f(xk+1) , (10c)

where H0, H1, ... are independent realizations of H and
τ is a parameter to be chosen. Following (Wilson et al.,
2016), we construct a candidate Lyapunov function Vk for
the sequence (10) defined as

Vk = f(yk)− f∗ +
µ

2
‖zk − x∗‖2G−1 . (11)

The following theorem demonstrates that Vk is indeed a
Lyapunov function for (xk, yk, zk).

Theorem 3.4. Let f,G,H be as defined above. Suppose
further that f has 1-Lipschitz gradients w.r.t. the ‖·‖G−1

norm, and for every fixed x ∈ Rn,

f(Φ(x;H)) ≤ f(x)− 1

2
‖∇f(x)‖2H , (12)

holds for a.e. H , where Φ(x;H) = x−H∇f(x). Set τ in
(10) as τ =

√
µ/ν, with

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
.

Then for every k ≥ 0, we have

E[Vk] ≤ (1− τ)kV0 .

We now proceed to specialize Theorem 3.4 to both the
Gauss-Seidel and Kaczmarz settings.

3.2.1. ACCELERATED GAUSS-SEIDEL

Let S ∈ Rn×p denote a random sketching matrix. As sug-
gested in Section 2, we set f(x) = 1

2x
TAx − xTb and put

H = S(STAS)†ST. Note that G = E[S(STAS)†ST] is
positive definite iff λmin(E[PA1/2S]) > 0, and is hence sat-
isfied for both fixed partition and random coordinate sam-
pling (c.f. Section 2). Next, the fact that f is 1-Lipschitz
w.r.t. the ‖·‖G−1 norm and the condition (12) are standard
calculations detailed in Section A.3.1. All the hypotheses
of Theorem 3.4 are thus satisfied, and the conclusion is
Theorem 3.5, which characterizes the rate of convergence
for accelerated Gauss-Seidel (Algorithm 1).

Algorithm 1 Accelerated randomized block Gauss-Seidel.
Require: A ∈ Rn×n, A � 0, b ∈ Rn, sketching matrices
{Sk}T−1

k=0 ⊆ Rn×p, x0 ∈ Rn, µ ∈ (0, 1), ν ≥ 1.
1: Set τ =

√
µ/ν.

2: Set y0 = z0 = x0.
3: for k = 0, ..., T − 1 do
4: xk+1 = 1

1+τ yk + τ
1+τ zk.

5: Hk = Sk(ST
kASk)†ST

k .
6: yk+1 = xk+1 −Hk(Axk+1 − b).
7: zk+1 = zk + τ(xk+1 − zk)− τ

µHk(Axk+1 − b).
8: end for
9: Return yT .

Theorem 3.5. Let A be an n × n positive definite matrix
and b ∈ Rn. Let x∗ ∈ Rn denote the unique vector sat-
isfying Ax∗ = b. Suppose each Sk, k = 0, 1, 2, ... is an
independent copy of a random matrix S ∈ Rn×p. Put
µ = λmin(E[PA1/2S]), and suppose the distribution of S
satisfies µ > 0. Invoke Algorithm 1 with µ and ν, where

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
, (13)

with H = S(STAS)†ST and G = E[H]. Then with τ =√
µ/ν, for all k ≥ 0,

E[‖yk − x∗‖A] ≤
√

2(1− τ)k/2‖x0 − x∗‖A . (14)

Breaking Locality Accelerates Block Gauss-Seidel

Note that in the setting of Theorem 3.5, by the definition
of ν and µ, it is always the case that ν ≤ 1/µ. Therefore,
the iteration complexity of acceleration (Algorithm 1) is at
least as good as the iteration complexity without accelera-
tion (Equation 1).

We conclude our discussion of Gauss-Seidel by describ-
ing the analogue of Proposition 3.3 for Algorithm 1, which
shows that our analysis in Theorem 3.5 is tight order-
wise. The following proposition applies to ACDM as well;
Section A.4.2 of the appendix shows how ACDM can be
viewed as a special case of Algorithm 1.
Proposition 3.6. Under the setting of Theorem 3.5, there
exists starting positions y0, z0 ∈ Rn such that the iterates
{(yk, zk)}k≥0 produced by Algorithm 1 satisfy

E[‖yk − x∗‖A + ‖zk − x∗‖A] ≥ (1− τ)k‖y0 − x∗‖A .

3.2.2. ACCELERATED KACZMARZ

The argument for Theorem 3.5 can be slightly modified to
yield a result for randomized accelerated Kaczmarz in the
sketching framework, for the case of a consistent overde-
termined linear system.

Specifically, suppose we are given anm×nmatrixAwhich
has full column rank, and b ∈ R(A). Our goal is to recover
the unique x∗ satisfying Ax∗ = b. To do this, we apply
a similar line of reasoning as (Lee & Sidford, 2013). We
set f(x) = 1

2‖x − x∗‖22 and H = PATS , where S again
is our random sketching matrix. At first, it appears our
choice of f is problematic since we do not have access to
f and ∇f , but a quick calculation shows that H∇f(x) =
(STA)†ST(Ax − b). Hence, with rk = Axk − b, the se-
quence (10) simplifies to

xk+1 =
1

1 + τ
yk +

τ

1 + τ
zk , (15a)

yk+1 = xk+1 − (ST
kA)†ST

k rk+1 , (15b)

zk+1 = zk + τ(xk+1 − zk)− τ

µ
(ST
kA)†ST

k rk+1 . (15c)

The remainder of the argument (Section A.5) proceeds
nearly identically, and the conclusion is the following the-
orem.
Theorem 3.7. Let A be an m × n matrix with full col-
umn rank, and b = Ax∗. Suppose each Sk, k =
0, 1, 2, ... is an independent copy of a random sketch-
ing matrix S ∈ Rm×p. Put H = PATS and G =
E[H]. The sequence (15) with µ = λmin(E[PATS]), ν =
λmax

(
E
[
(G−1/2HG−1/2)2

])
, and τ =

√
µ/ν satisfies

for all k ≥ 0,

E[‖yk − x∗‖2] ≤
√

2(1− τ)k/2‖x0 − x∗‖2 . (16)

Specialized to the setting of (Liu & Wright, 2016) where
each row of A has unit norm and is sampled uniformly

at every iteration, it can be shown (see Section A.5.1)
that ν ≤ m and µ = 1

mλmin(ATA). Hence, Theo-
rem 3.7 states that the iteration complexity to reach ε er-

ror is O
(

m√
λmin(ATA)

log(1/ε)

)
, which matches Theo-

rem 5.1 of (Liu & Wright, 2016) order-wise. On the other
hand, Theorem 3.7 applies more generally for any sketch-
ing matrix.

3.3. Specializing accelerated Gauss-Seidel to random
coordinate sampling

We now instantiate Theorem 3.5 to random coordinate
sampling. The µ quantity which appears in Theorem 3.5
is identical to the quantity appearing in the rate (2) of non-
accelerated Gauss-Seidel. That is, the iteration complex-

ity to reach tolerance ε is O
(√

νµ−1
rand log(1/ε)

)
, and the

only new term here is ν. In order to provide a more intu-
itive interpretation of the ν quantity, we present an upper
bound on ν in terms of an effective block condition num-
ber defined as follows. Given an index set J ⊆ 2[n], de-
fine the effective block condition number of a matrix A as
κeff,J(A) = maxi∈J Aii

λmin(AJ) . Note that κeff,J(A) ≤ κ(AJ) al-
ways. The following lemma gives upper and lower bounds
on the ν quantity.

Lemma 3.8. LetA be an n×n positive definite matrix and
let p satisfy 1 < p < n. We have that

n

p
≤ ν ≤ n

p

(
p− 1

n− 1
+

(
1− p− 1

n− 1

)
κeff,p(A)

)
,

where κeff,p(A) = maxJ⊆2[n]:|J|=p κeff,J(A), ν is defined
in (13), and the distribution of S corresponds to uniformly
selecting p coordinates without replacement.

Lemma 3.8 states that if the p × p sub-blocks of A are
well-conditioned as defined by the effective block condi-
tion number κeff,J(A), then the speed-up of accelerated
Gauss-Seidel with random coordinate selection over its
non-accelerate counterpart parallels the case of fixed par-
titioning sampling (i.e. the rate described in (6) versus the
rate in (2)). This is a reasonable condition, since very ill-
conditioned sub-blocks will lead to numerical instabilities
in solving the sub-problems when implementing Gauss-
Seidel. On the other hand, we note that Lemma 3.8 pro-
vides merely a sufficient condition for speed-ups from ac-
celeration, and is conservative. Our numerically exper-
iments in Section A.7.2 suggest that in many cases the
ν parameter behaves closer to the lower bound n/p than
Lemma 3.8 suggests. We leave a more thorough theoreti-
cal analysis of this parameter to future work.

With Lemma 3.8 in place, we can combine Theorem 3.5
with (5) to derive the following upper bound on the itera-
tion complexity of accelerated Gauss-Seidel with random

Breaking Locality Accelerates Block Gauss-Seidel

coordinates as

Nrand,acc ≤ O
(
n

p

√
max1≤i≤nAii
λmin(A)

κeff,p(A) log(1/ε)

)
.

Illustrative example. We conclude our results by illus-
trating our bounds on a simple example. Consider the sub-
family {Aδ}δ>0 ⊆ A , with

Aδ = An+δ,−n , δ > 0 . (17)

A simple calculation yields that κeff,p(Aδ) = n−1+δ
n−p+δ ,

and hence Lemma 3.8 states that ν(Aδ) ≤ n
p

(
1 + p−1

n−1

)
.

Furthermore, by a similar calculation to Proposition 3.2,
µrand = pδ

n(n−p+δ) . Assuming for simplicity that p =

o(n) and δ ∈ (0, 1), Theorem 3.5 states that at most
O(n

3/2

p
√
δ

log(1/ε)) iterations are sufficient for an ε-accurate
solution. On the other hand, without acceleration (2) states
that O(n

2

pδ log(1/ε)) iterations are sufficient and Proposi-
tion 3.3 shows there exists a starting position for which it is
necessary. Hence, as either n grows large or δ tends to zero,
the benefits of acceleration become more pronounced.

4. Related Work
We split the related work into two broad categories of in-
terest: (a) work related to coordinate descent (CD) methods
on convex functions and (b) randomized solvers designed
for solving consistent linear systems. See (Kelley, 1995)
for classical background on numerical methods for solving
linear systems. For a more recent survey on coordinate de-
scent methods in optimization, see (Wright, 2015).

When A is positive definite, Gauss-Seidel can be inter-
preted as an instance of coordinate descent on a strongly
convex quadratic function. We therefore review related
work on both non-accelerated and accelerated coordinate
descent, focusing on the randomized setting instead of the
more classical cyclic order or Gauss-Southwell rule for se-
lecting the next coordinate. See (Tseng & Yun, 2009) for a
discussion on non-random selection rules.

Nesterov’s original paper (Nesterov, 2012) first considered
randomized CD on convex functions, assuming a partition-
ing of coordinates fixed ahead of time. The analysis in-
cluded both non-accelerated and accelerated variants for
convex functions. This work sparked a resurgence of in-
terest in CD methods for large scale data analysis. Most
relevant to our paper are extensions to the block setting
(Richtárik & Takác̆, 2014), to handling arbitrary sampling
distributions (Qu & Richtárik, 2014a;b; Fountoulakis &
Tappenden, 2016), and second order updates for quadratic
functions (Qu et al., 2016).

For accelerated CD, Lee and Sidford (2013) generalize the
analysis of Nesterov (2012). While the analysis of (Lee &

Sidford, 2013) was limited to selecting a single coordinate
at a time, several follow on works (Qu & Richtárik, 2014a;
Lin et al., 2014; Lu & Xiao, 2015; Fercoq & Richtárik,
2015) generalize to block and non-smooth settings. More
recently, both Allen-Zhu et al. (2016) and Nesterov and
Stich (2016) independently improve the results of (Lee &
Sidford, 2013) by using a different non-uniform sampling
distribution. One of the most notable aspects of the analysis
in (Allen-Zhu et al., 2016) is a departure from the (prob-
abilistic) estimate sequence framework of Nesterov (see
(Nesterov, 2004) for background on estimate sequences).
Instead, the authors of (Allen-Zhu et al., 2016) construct a
valid Lyapunov function for coordinate descent, although
they do not explicitly mention this. In our work, we make
this Lyapunov point of view explicit. The constants we
choose in our acceleration updates arise from a particular
discretization and Lyapunov function outlined from Wil-
son et al. (2016). Using this framework makes our proof
particularly transparent, and allows us to recover results
for strongly convex functions from (Allen-Zhu et al., 2016)
and (Nesterov & Stich, 2016) as a special case.

From the numerical analysis side, we focus on the literature
for solving consistent systems. Both the Gauss-Seidel and
Kaczmarz algorithm are considered classical. Strohmer
and Vershynin (2009) were the first to prove a linear rate
of convergence for randomized Kaczmarz, and Leventhal
and Lewis (2010) provide a similar kind of analysis for
randomized Gauss-Seidel. Both (Strohmer & Vershynin,
2009) and (Leventhal & Lewis, 2010) were in the single
constraint/coordinate setting. The block setting was later
analyzed by Needell and Tropp (2014). More recently,
Gower and Richtárik (2015) provide a unified analysis for
both randomized block Gauss-Seidel and Kaczmarz in the
sketching framework, which we adopt in this paper. Fi-
nally, Liu and Wright (2016) provide an accelerated analy-
sis of randomized Kaczmarz once again in the single con-
straint setting and we extend this to the block setting.

5. Experiments
In this section we experimentally validate our theoretical
results on how our accelerated algorithms can improve con-
vergence rates. Our experiments use a combination of
synthetic matrices and matrices from large scale machine
learning tasks.

Setup. We run all our experiments on a 4 socket Intel Xeon
CPU E7-8870 machine with 18 cores per socket and 1TB of
DRAM. We implement all our algorithms in Python using
numpy, and use the Intel MKL library with 72 OpenMP
threads for numerical operations. We report errors as rel-
ative errors, i.e. ‖xk − x∗‖2A/‖x∗‖2A. Finally, we use the
best values of µ and ν found by tuning each experiment.

Breaking Locality Accelerates Block Gauss-Seidel

0 100 200 300 400 500
Iteration

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

‖x
k
−

x ∗
‖2 A
/
‖x
∗‖

2 A

Id+RankOne, n=5000, p=500

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 1. Experiments comparing fixed partitions versus random
coordinate sampling for the example from Section 3.1 with n =
5000 coordinates, block size p = 500.

5.1. Fixed partitioning vs random coordinate sampling

Our first set of experiments numerically verify the sepa-
ration between fixed partitioning sampling versus random
coordinate sampling.

Figure 1 shows the progress per iteration on solving
A1,βx = b, with the A1,β defined in Section 3.1. Here
we set n = 5000, p = 500, β = 1000, and b ∼ N(0, I).
Figure 1 verifies our analytical findings in Section 3.1, that
the fixed partition scheme is substantially worse than uni-
form sampling on this instance. It also shows that in this
case, acceleration provides little benefit in the case of ran-
dom coordinate sampling. This is because both µ and 1/ν
are order-wise p/n, and hence the rate for accelerated and
non-accelerated coordinate descent coincide. However we
note that this only applies for matrices where µ is as large
as it can be (i.e. p/n), that is instances for which Gauss-
Seidel is already converging at the optimal rate (see (Gower
& Richtárik, 2015), Lemma 4.2).

5.2. Kernel ridge regression

We next evaluate how fixed partitioning and random co-
ordinate sampling affects the performance of Gauss-Seidel
on large scale machine learning tasks. To do this we use
the popular image classification datasets CIFAR-10. The
task we evaluate is kernel ridge regression (KRR) with
a Gaussian kernel. Specifically, given a labeled dataset
{(xi, yi)}ni=1, we solve the linear system (K + λI)α = Y
with Kij = exp(−γ‖xi − xj‖22), where λ, γ > 0 are tun-
able parameters. The key property of kernel ridge regres-
sion is that the kernel matrix K is always positive semi-
definite, and hence Algorithm 1 applies.

For the CIFAR-10 dataset, we augment the dataset1 to in-

1Similar to https://github.com/akrizhevsky/cuda-convnet2.

0 100 200 300 400 500
Iteration

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/
‖x
∗‖

2 A

CIFAR-10 KRR, n=250k, p=10k

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 2. Experiments comparing fixed partitions versus uniform
random sampling for CIFAR-10 augmented matrix while running
kernel ridge regression. CIFAR-10 augmented matrix has n =
250000 coordinates and we set block size to p = 10000.

clude five reflections, translations per-image and then ap-
ply standard pre-processing steps used in image classifica-
tion (Coates & Ng, 2012; Sparks et al., 2017). We finally
apply a Gaussian kernel on our pre-processed images and
the resulting kernel matrix has n = 250000 coordinates.
We also include experiments on a smaller MNIST kernel
matrix (n = 60000) in Section A.7.

Results from running 500 iterations of random coordinate
sampling and fixed partitioning algorithms are shown in
Figure 2. Comparing convergence across iterations, sim-
ilar to previous section, we see that un-accelerated Gauss-
Seidel with random coordinate sampling is better than ac-
celerated Gauss-Seidel with fixed partitioning. However
we also see that using acceleration with random sampling
can further improve the convergence rates, especially to
achieve errors of 10−3 or lower.

We also compare the convergence with respect to running
time in Figure 3. Fixed partitioning has better perfor-
mance in practice random access is expensive in multi-
core systems. Furthermore, the partitions can be computed
once and cached across iterations. However, we see that
this speedup in implementation comes at a substantial cost
in terms of convergence rate. For example in the case
of CIFAR-10, using fixed partitions leads to an error of
1.2 × 10−2 after around 7000 seconds. In comparison we
see that random coordinate sampling achieves a similar er-
ror in around 4500 seconds and is thus 1.5× faster. We also
note that this speedup increases for lower error tolerances.

5.3. Comparing Gauss-Seidel to Conjugate-Gradient

We also compared Gauss-Seidel with random coordinate
sampling to the classical conjugate-gradient (CG) algo-
rithm. CG is an important baseline to compare with, as

https://github.com/akrizhevsky/cuda-convnet2

Breaking Locality Accelerates Block Gauss-Seidel

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

10−6

10−5

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/
‖x
∗‖

2 A

CIFAR-10 KRR, n=250k, p=10k

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates
Conjugate Gradient

Figure 3. Experiments comparing conjugate gradient with accel-
erated and un-accelerated Gauss-Seidel methods for CIFAR-10
augmented matrix while running kernel ridge regression. CIFAR-
10 augmented matrix has n = 250000 coordinates and we set
block size to p = 10000.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time (s) to 10−5 error

p = 50

p = 100

p = 200

p = 500

p = 800

p = 1000

B
lo

ck
Si

ze

MNIST Random Features, n=5000

Figure 4. The effect of block size on the accelerated Gauss-Seidel
method. For the MNIST dataset (pre-processed using random fea-
tures) we see that block size of p = 500 works best.

it is the de-facto standard iterative algorithm for solving
linear systems in the numerical analysis community. The
results of our experiment are shown in Figure 3. We note
that Gauss-Seidel both with and without acceleration out-
perform CG. As an example, we note that to reach er-
ror 10−1 on CIFAR-10, CG takes roughly 7000 seconds,
compared to less than 2000 seconds for accelerated Gauss-
Seidel, which is a 3.5× improvement.

To understand this performance difference, we recall that
our matrices A are fully dense, and hence each iteration
of CG takes O(n2). On the other hand, each iteration of
both non-accelerated and accelerated Gauss-Seidel takes
O(np2 + p3). Hence, as long as p = O(n2/3), the time
per iteration of Gauss-Seidel is order-wise no worse than
CG. In terms of iteration complexity, standard results state
that CG takes at most O(

√
κ log(1/ε)) iterations to reach

an ε error solution, where κ denotes the condition num-

ber of A. On the other hand, Gauss-Seidel takes at most
O(npκeff log(1/ε)), where κeff =

max1≤i≤n Aii
λmin(A) . In the

case of any (normalized) kernel matrix associated with a
translation-invariant kernel such as the Gaussian kernel, we
have max1≤i≤nAii = 1, and hence generally speaking
κeff is much lower than κ.

5.4. Effect of block size

We next analyze the importance of the block size p for the
accelerated Gauss-Seidel method. As the values of µ and ν
change for each setting of p, we use a smaller MNIST ma-
trix for this experiment. We apply a random feature trans-
formation (Rahimi & Recht, 2007) to generate an n × d
matrix F with d = 5000 features. We then use A = FTF
and b = FTY as inputs to the algorithm. Figure 4 shows
the wall clock time to converge to 10−5 error as we vary
the block size from p = 50 to p = 1000.

Increasing the block-size improves the amount of progress
that is made per iteration but the time taken per iteration
increases as O(p3) (Line 5, Algorithm 1). However, using
efficient BLAS-3 primitives usually affords a speedup from
systems techniques like cache blocking. We see the effects
of this in Figure 4 where using p = 500 performs better
than using p = 50. We also see that these benefits reduce
for much larger block sizes and thus p = 1000 is slower.

6. Conclusion
In this paper, we extended the accelerated block Gauss-
Seidel algorithm beyond fixed partition sampling. Our
analysis introduced a new data-dependent parameter ν
which governs the speed-up of acceleration under more
general sampling schemes. Specializing our theory to ran-
dom coordinate sampling, we derived an upper bound on ν
which shows that well conditioned blocks are a sufficient
condition to ensure speedup. Experimentally, we showed
that block Gauss-Seidel with random coordinate sampling
is readily accelerated beyond what our bound suggests.

The most obvious question remains to derive a sharper
bound on the ν constant from Theorem 3.5. Another inter-
esting question is whether or not the iteration complexity
of random coordinate sampling is always bounded above
by the iteration complexity with fixed coordinate sampling.

In the future, we also plan to study a practical implementa-
tion of accelerated Gauss-Seidel in a distributed setting, in
the style of Tu et al. (2016). The main challenges here are
in determining how to sample coordinates efficiently with-
out significant communication overheads, and to efficiently
estimate the µ and ν parameters. We plan to explore if other
sampling schemes such as shuffling the coordinates at the
end of every epoch (Recht & Ré, 2013) can be used.

Breaking Locality Accelerates Block Gauss-Seidel

Acknowledgements
We thank Ross Boczar for assisting us with Mathemat-
ica support for non-commutative algebras, Orianna De-
Masi for providing useful feedback on earlier drafts of
this manuscript, and the anonymous reviewers for their
helpful feedback. ACW is supported by an NSF Gradu-
ate Research Fellowship. BR is generously supported by
ONR awards N00014-11-1-0723 and N00014-13-1-0129,
NSF award CCF-1359814, the DARPA Fundamental Lim-
its of Learning (Fun LoL) Program, a Sloan Research Fel-
lowship, and a Google Research Award. This research is
supported in part by DHS Award HSHQDC-16-3-00083,
NSF CISE Expeditions Award CCF-1139158, DOE Award
SN10040 DE-SC0012463, and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services,
Google, IBM, SAP, The Thomas and Stacey Siebel Foun-
dation, Apple Inc., Arimo, Blue Goji, Bosch, Cisco, Cray,
Cloudera, Ericsson, Facebook, Fujitsu, HP, Huawei, In-
tel, Microsoft, Mitre, Pivotal, Samsung, Schlumberger,
Splunk, State Farm and VMware.

References
Allen-Zhu, Zeyuan, Richtárik, Peter, Qu, Zheng, and Yuan,

Yang. Even Faster Accelerated Coordinate Descent Us-
ing Non-Uniform Sampling. In ICML, 2016.

Coates, Adam and Ng, Andrew Y. Learning Feature Rep-
resentations with K-Means. In Neural Networks: Tricks
of the Trade. Springer, 2012.

Fercoq, Olivier and Richtárik, Peter. Accelerated, Parallel,
and Proximal Coordinate Descent. SIAM J. Optim., 25
(4), 2015.

Fountoulakis, Kimon and Tappenden, Rachael. A Flexible
Coordinate Descent Method. arXiv, 1507.03713, 2016.

Gower, Robert M. and Richtárik, Peter. Randomized It-
erative Methods for Linear Systems. SIAM Journal on
Matrix Analysis and Applications, 36, 2015.

Kelley, C. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathe-
matics, 1995.

Lee, Ching-Pei and Wright, Stephen J. Random Permuta-
tions Fix a Worst Case for Cyclic Coordinate Descent.
arXiv, 1607.08320, 2016.

Lee, Yin Tat and Sidford, Aaron. Efficient Accelerated
Coordinate Descent Methods and Faster Algorithms for
Solving Linear Systems. In FOCS, 2013.

Leventhal, D. and Lewis, A. S. Randomized Methods for
Linear Constraints: Convergence Rates and Condition-
ing. Mathematics of Operations Research, 35(3), 2010.

Lin, Qihang, Lu, Zhaosong, and Xiao, Lin. An Accelerated
Proximal Coordinate Gradient Method. In NIPS, 2014.

Liu, Ji and Wright, Stephen J. An Accelerated Randomized
Kaczmarz Algorithm. Mathematics of Computation, 85
(297), 2016.

Lu, Zhaosong and Xiao, Lin. On the Complexity Analy-
sis of Randomized Block-Coordinate Descent Methods.
Mathematical Programming, 152(1–2), 2015.

Needell, D. and Tropp, J. A. Paved with Good Intentions:
Analysis of a Randomized Block Kaczmarz Method.
Linear Algebra and its Applications, 441, 2014.

Nesterov, Y. Introductory Lectures on Convex Program-
ming. Basic Course, volume 87 of Applied Optimization.
Springer, 2004.

Nesterov, Y. Efficiency of Coordinate Descent Methods on
Huge-Scale Optimization Problems. SIAM J. Optim., 22
(2), 2012.

Nesterov, Y. and Stich, S. Efficiency of Accelerated Co-
ordinate Descent Method on Structured Optimization
Problems. Technical report, Université catholique de
Louvain, CORE Discussion Papers, 2016.

Qu, Zheng and Richtárik, Peter. Coordinate Descent
with Arbitrary Sampling I: Algorithms and Complexity.
arXiv, 1412.8060, 2014a.

Qu, Zheng and Richtárik, Peter. Coordinate Descent with
Arbitrary Sampling II: Expected Separable Overapprox-
imation. arXiv, 1412.8063, 2014b.

Qu, Zheng, Richtárik, Peter, and Zhang, Tong. Random-
ized Dual Coordinate Ascent with Arbitrary Sampling.
In NIPS, 2015.

Qu, Zheng, Richtárik, Peter, Takác̆, Martin, and Fercoq,
Olivier. SDNA: Stochastic Dual Newton Ascent for Em-
pirical Risk Minimization. In ICML, 2016.

Rahimi, Ali and Recht, Benjamin. Random Features for
Large-Scale Kernel Machines. In NIPS, 2007.

Recht, Benjamin and Ré, Christopher. Parallel Stochas-
tic Gradient Algorithms for Large-Scale Matrix Com-
pletion. Mathematical Programming Computation, 5(2):
201–226, 2013.

Richtárik, Peter and Takác̆, Martin. Iteration Complexity
of Randomized Block-Coordinate Descent Methods for
Minimizing a Composite Function. Mathematical Pro-
gramming, 114, 2014.

Breaking Locality Accelerates Block Gauss-Seidel

Sparks, Evan R., Venkataraman, Shivaram, Kaftan, Tomer,
Franklin, Michael, and Recht, Benjamin. KeystoneML:
Optimizing Pipelines for Large-Scale Advanced Analyt-
ics. In ICDE, 2017.

Strohmer, Thomas and Vershynin, Roman. A Random-
ized Kaczmarz Algorithm with Exponential Conver-
gence. Journal of Fourier Analysis and Applications, 15
(1), 2009.

Tseng, Paul and Yun, Sangwoon. A Coordinate Gradient
Descent Method for Nonsmooth Separable Minimiza-
tion. Mathematical Programming, 117(1), 2009.

Tu, Stephen, Roelofs, Rebecca, Venkataraman, Shivaram,
and Recht, Benjamin. Large Scale Kernel Learning
using Block Coordinate Descent. arXiv, 1602.05310,
2016.

Wilson, Ashia C., Recht, Benjamin, and Jordan, Michael I.
A Lyapunov Analysis of Momentum Methods in Opti-
mization. arXiv, 1611.02635, 2016.

Wright, Stephen J. Coordinate Descent Algorithms. Math-
ematical Programming, 151(1), 2015.

Supplementary Material

A.1. Preliminaries
Notation. The notation is standard. [n] = {1, 2, ..., n} refers to the set of integers from 1 to n, and 2[n] refers to the set
of all subsets of [n]. We let 1n ∈ Rn denote the vector of all ones. Given a square matrix M with real eigenvalues, we let
λmax(M) (resp. λmin(M)) denote the maximum (resp. minimum) eigenvalue of M . For two symmetric matrices M,N ,
the notationM < N (resp. M � N) means that the matrixM−N is positive semi-definite (resp. positive definite). Every
such M � 0 defines a real inner product space via the inner product 〈x, y〉M = xTMy. We refer to its induced norm
as ‖x‖M =

√
〈x, x〉M . The standard Euclidean inner product and norm will be denoted as 〈·, ·〉 and ‖·‖2, respectively.

For an arbitrary matrix M , we let M† denote its Moore-Penrose pseudo-inverse and PM the orthogonal projector onto the
range of M , which we denote asR(M). When M < 0, we let M1/2 denote its unique Hermitian square root. Finally, for
a square n× n matrix M , diag(M) is the n× n diagonal matrix which contains the diagonal elements of M .

Partitions on [n]. In what follows, unless stated otherwise, whenever we discuss a partition of [n] we assume that the
partition is given by

⋃n/p
i=1 Ji, where

J1 = {1, 2, ..., p} , J2 = {p+ 1, p+ 2, ..., 2p},

This is without loss of generality because for any arbitrary equal sized partition of [n], there exists a permutation matrix Π
such that all our results apply by the change of variables A← ΠTAΠ and b← ΠTb.

A.2. Proofs for Separation Results (Section 3.1)
A.2.1. Expectation calculations (Propositions 3.1 and 3.2)

Recall the family of n× n positive definite matrices A defined in (17) as

Aα,β = αI +
β

n
1n1

T
n , α > 0, α+ β > 0 . (18)

We first gather some elementary formulas. By the matrix inversion lemma,

A−1
α,β =

(
αI +

β

n
1n1

T
n

)−1

= α−1I − β/n

α(α+ β)
1n1

T
n . (19)

Furthermore, let S ∈ Rn×p be any column selector matrix with no duplicate columns. We have again by the matrix
inversion lemma

(STAα,βS)−1 =

(
αI +

β

n
1p1

T
p

)−1

= α−1I − β/n

α(α+ βp/n)
1p1

T
p . (20)

The fact that the right hand side is independent of S is the key property which makes our calculations possible. Indeed, we
have that

S(STAα,βS)−1ST = α−1SST − β/n

α(α+ βp/n)
S1p1

T
pS

T . (21)

With these formulas in hand, our next proposition gathers calculations for the case when S represents uniformly choosing
p columns without replacement.

Breaking Locality Accelerates Block Gauss-Seidel

Proposition A.2.1. Consider the family of n× n positive definite matrices {Aα,β} from (18). Fix any integer p such that
1 < p < n. Let S ∈ Rn×p denote a random column selector matrix where each column of S is chosen uniformly at random
without replacement from {e1, ..., en}. For any Aα,β ,

E[S(STAα,βS)−1STAα,β] = p
(n− 1)α+ (p− 1)β

(n− 1)(nα+ pβ)
I +

(n− p)pβ
n(n− 1)(nα+ pβ)

1n1
T
n , (22)

E[S(STAα,βS)−1STG−1
α,βS(STAα,βS)−1ST] =

(
1

α
− (n− p)2β

(n− 1)((n− 1)α+ (p− 1)β)(nα+ pβ)

)
I

+
(p− 1)β(nα(1− 2n) + np(α− β) + pβ)

(n− 1)nα((n− 1)α+ (p− 1)β)(nα+ pβ)
1n1

T
n . (23)

Above, Gα,β = E[S(STAα,βS)−1ST].

Proof. First, we have the following elementary expectation calculations,

E[SST] =
p

n
I , (24)

E[S1p1
T
pS

T] =
p

n

(
1− p− 1

n− 1

)
I +

p

n

(
p− 1

n− 1

)
1n1

T
n , (25)

E[SST1n1
T
pS

T] = E[S1p1
T
nSS

T] = E[SST1n1
T
nSS

T] = E[S1p1
T
pS

T] , (26)

E[S1p1
T
pS

T1n1
T
nS1p1

T
pS

T] =
p3

n

(
1− p− 1

n− 1

)
I +

p3

n

(
p− 1

n− 1

)
1n1

T
n . (27)

To compute Gα,β , we simply plug (24) and (25) into (21). After simplification,

Gα,β = E[S(STAα,βS)−1ST] =
p

αn

(
1− β/n

α+ βp/n

(
1− p− 1

n− 1

))
I − p

n

p− 1

n− 1

β/n

α(α+ βp/n)
1n1

T
n .

From this formula for Gα,β , (22) follows immediately.

Our next goal is to compute E[S(STAα,βS)−1STG−1
α,βS(STAα,βS)−1ST]. To do this, we first invert Gα,β . Applying the

matrix inversion lemma, we can write down a formula for the inverse of Gα,β ,

G−1
α,β =

(n− 1)α(nα+ pβ)

(n− 1)pα+ (p− 1)pβ︸ ︷︷ ︸
γ

I +
(p− 1)β(nα+ pβ)

np((n− 1)α+ (p− 1)β)︸ ︷︷ ︸
η

1n1
T
n . (28)

Next, we note for any r, q, using the properties that STS = I , 1T
nS1p = p, and 1T

p1p = p, we have that

(rSST + qS1p1
T
pS

T)(γI + η1n1
T
n)(rSST + qS1p1

T
pS

T)

= γr2SST + 2rγqS1p1
T
pS

T + ηr2SST1n1
T
nSS

T

+ prηq(SST1n1
T
pS

T + S1p1
T
nSS

T) + pq2γS1p1
T
pS

T

+ ηq2S1p1
T
pS

T1n1
T
nS1p1

T
pS

T .

Taking expectations of both sides of the above equation and using the formulas in (24), (25), (26), and (27),

E[(rSST + qS1p1
T
pS

T)(γI + η1n1
T
n)(rSST + qS1p1

T
pS

T)]

=
p(p(n− p)q2 + 2(n− p)qr + (n− 1)r2)γ + p(n− p)(pq + r)2η

n(n− 1)
I

+
p(p− 1)(q(pq + 2r)γ + (pq + r)2η)

n(n− 1)
1n1

T
n .

We now set r = α−1, q = − β/n
α(α+βp/n) , and γ, η from (28) to reach the desired formula for (23).

Breaking Locality Accelerates Block Gauss-Seidel

Proposition 3.2 follows immediately from Proposition A.2.1 by plugging in α = 1 into (22). We next consider how (21)
behaves under a fixed partition of {1, ..., n}. Recall our assumption on partitions: n = pk for some integer k ≥ 1, and
we sequentially partition {1, ..., n} into k partitions of size p, i.e. J1 = {1, ..., p}, J2 = {p + 1, ..., 2p}, and so on.
Define S1, ..., Sk ∈ Rn×p such that Si is the column selector matrix for the partition Ji, and S uniformly chooses Si with
probability 1/k.

Proposition A.2.2. Consider the family of n × n positive definite matrices {Aα,β} from (18), and let n, p, and S be
described as in the preceding paragraph. We have that

E[S(STAα,βS)−1STAα,β] =
p

n
I +

pβ

n2α+ npβ
1n1

T
n −

pβ

n2α+ npβ
blkdiag(1p1

T
p , ...,1p1

T
p︸ ︷︷ ︸

k times

) . (29)

Proof. Once again, the expectation calculations are

E[SST] =
p

n
I, E[S1p1

T
pS

T] =
p

n
blkdiag(1p1

T
p , ...,1p1

T
p︸ ︷︷ ︸

k times

) .

Therefore,

E[S(STAα,βS)−1ST] =
p

αn
I − p

n

β/n

α(α+ βp/n)
blkdiag(1p1

T
p , ...,1p1

T
p) .

Furthermore,

blkdiag(1p1
T
p , ...,1p1

T
p)1n1

T
n = 1n1

T
nblkdiag(1p1

T
p , ...,1p1

T
p) = p1n1

T
n ,

Hence, the formula for E[S(STAα,βS)−1STAα,β] follows.

We now make the following observation. Let Q1, ..., Qk be any partition of {1, ..., n} into k partitions of size p. Let
ES∼Qi denote expectation with respect to S uniformly chosen as column selectors among Q1, ..., Qk, and let ES∼Ji
denote expectation with respect to the S in the setting of Proposition A.2.2. It is not hard to see there exists a permutation
matrix Π such that

ΠTES∼Qi [S(STAα,βS)−1ST]Π = ES∼Ji [S(STAα,βS)−1ST] .

Using this permutation matrix Π,

λmin(ES∼Qi [PA1/2
α,βS

]) = λmin(ES∼Qi [S(STAα,βS)−1ST]Aα,β)

= λmin(ES∼Qi [S(STAα,βS)−1ST]ΠAα,βΠT)

= λmin(ΠTES∼Qi [S(STAα,βS)−1ST]ΠAα,β)

= λmin(ES∼Ji [S(STAα,βS)−1ST]Aα,β)

= λmin(ES∼Ji [PA1/2
α,βS

]) .

Above, the second equality holds becauseAα,β is invariant under a similarity transform by any permutation matrix. There-
fore, Proposition A.2.2 yields the µpart value for every partition Q1, ..., Qk. The claim of Proposition 3.1 now follows by
substituting α = 1 into (29).

A.2.2. Proof of Proposition 3.3

Define ek = xk − x∗, Hk = Sk(ST
kASk)†ST

k and G = E[Hk]. From the update rule (1),

ek+1 = (I −HkA)ek =⇒ A1/2ek+1 = (I −A1/2HkA
1/2)A1/2ek .

Taking and iterating expectations,

E[A1/2ek+1] = (I −A1/2GA1/2)E[A1/2ek] .

Breaking Locality Accelerates Block Gauss-Seidel

Unrolling this recursion yields for all k ≥ 0,

E[A1/2ek] = (I −A1/2GA1/2)kA1/2e0 .

Choose A1/2e0 = v, where v is an eigenvector of I − A1/2GA1/2 with eigenvalue λmax(I − A1/2GA1/2) = 1 −
λmin(GA) = 1− µ. Now by Jensen’s inequality,

E[‖ek‖A] = E[‖A1/2ek‖2] ≥ ‖E[A1/2ek]‖2 = (1− µ)k‖e0‖A .

This establishes the claim.

A.3. Proofs for Convergence Results (Section 3.2)
We now state our main structural result for accelerated coordinate descent. Let P be a probability measure on Ω =
Sn×n×R+×R+, with Sn×n denoting n×n positive semi-definite matrices and R+ denoting positive reals. Write ω ∈ Ω
as the tuple ω = (H,Γ, γ), and let E denote expectation with respect to P. Suppose that G = E[1

γH] exists and is positive
definite.

Now suppose that f : Rn −→ R is a differentiable and strongly convex function, and put f∗ = minx f(x), with x∗
attaining the minimum value. Suppose that f is both µ-strongly convex and has L-Lipschitz gradients with respect to the
G−1 norm. This means that for all x, y ∈ Rn, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2G−1 , (30a)

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2G−1 . (30b)

We now define a random sequence as follows. Let ω0 = (H0,Γ0, γ0), ω1 = (H1,Γ1, γ1), ... be independent realizations
from P. Starting from y0 = z0 = x0 with x0 fixed, consider the sequence {(xk, yk, zk)}k≥0 defined by the recurrence

τ(xk+1 − zk) = yk − xk+1 , (31a)

yk+1 = xk+1 −
1

Γk
Hk∇f(xk+1) , (31b)

zk+1 − zk = τ

(
xk+1 − zk −

1

µγk
Hk∇f(xk+1)

)
. (31c)

It is easily verified that (x, y, z) = (x∗, x∗, x∗) is a fixed point of the aforementioned dynamical system. Our goal for now
is to describe conditions on f , µ, and τ such that the sequence of updates (31a), (31b), and (31c) converges to this fixed
point. As described in Wilson et al. (2016), our main strategy for proving convergence will be to introduce the following
Lyapunov function

Vk = f(yk)− f∗ +
µ

2
‖zk − x∗‖2G−1 , (32)

and show that Vk decreases along every trajectory. We let Ek denote the expectation conditioned on Fk =
σ(ω0, ω1, ..., ωk−1). Observe that xk+1 is Fk-measurable, a fact we will use repeatedly throughout our calculations.
With the preceding definitions in place, we state and prove our main structural theorem.

Theorem A.3.1. (Generalization of Theorem 3.4.) Let f and G be as defined above, with f satisfying µ-strongly convexity
andL-Lipschitz gradients with respect to the ‖·‖G−1 norm, as defined in (30a) and (30b). Suppose that for all fixed x ∈ Rn,
we have that the following holds for almost every ω ∈ Ω,

f(Φ(x;ω)) ≤ f(x)− 1

2Γ
‖∇f(x)‖2H , Φ(x;ω) = x− 1

Γ
H∇f(x) . (33)

Furthermore, suppose that ν > 0 satisfies

E
[

1

γ2
HG−1H

]
4 νE

[
1

γ2
H

]
. (34)

Breaking Locality Accelerates Block Gauss-Seidel

Then as long as we set τ > 0 such that τ satisfies for almost every ω ∈ Ω,

τ ≤ γ√
Γ

√
µ

ν
, τ ≤

√
µ

L
, (35)

we have that Vk defined in (32) satisfies for all k ≥ 0,

Ek[Vk+1] ≤ (1− τ)Vk . (36)

Proof. First, recall the following two point equality valid for any vectors a, b, c ∈ V in a real inner product space V ,

‖a− b‖2V − ‖c− b‖2V = ‖a− c‖2V + 2〈a− c, c− b〉V . (37)

Now we can proceed with our analysis,

Vk+1 − Vk (37)
= f(yk+1)− f(yk)− µ〈zk+1 − zk, x∗ − zk〉G−1 +

µ

2
‖zk+1 − zk‖2G−1

= f(yk+1)− f(xk+1) + f(xk+1)− f(yk)− µ〈zk+1 − zk, x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2G−1

(30a)
≤ f(yk+1)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

− µ〈zk+1 − zk, x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2G−1 (38a)

(31c)
= f(yk+1)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

+ τ〈 1

γk
Hk∇f(xk+1)− µ(xk+1 − zk), x∗ − zk〉G−1 +

µ

2
‖zk+1 − zk‖2G−1 (38b)

= f(yk+1)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk〉 −
µ

2
‖xk+1 − yk‖2G−1

+ τ〈 1

γk
Hk∇f(xk+1), x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1), xk+1 − zk〉G−1

− τµ〈xk+1 − zk, x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2G−1

(31c)
= f(yk+1)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

+ τ〈 1

γk
Hk∇f(xk+1), x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1), xk+1 − zk〉G−1

− τµ〈xk+1 − zk, x∗ − zk〉G−1 +
µ

2
‖τ(xk+1 − zk)‖2G−1 +

τ2

2µγ2
k

‖Hk∇f(xk+1)‖2G−1

− τ〈xk+1 − zk, τ
1

γk
Hk∇f(xk+1)〉G−1 (38c)

(33)
≤ − 1

2Γk
‖∇f(xk+1)‖2Hk + 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

+ τ〈 1

γk
Hk∇f(xk+1), x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1), xk+1 − zk〉G−1

− τµ〈xk+1 − zk, x∗ − zk〉G−1 +
µ

2
‖τ(xk+1 − zk)‖2G−1 +

τ2

2µγ2
k

‖Hk∇f(xk+1)‖2G−1

− τ〈xk+1 − zk, τ
1

γk
Hk∇f(xk+1)〉G−1 . (38d)

Above, (38a) follows from µ-strong convexity, (38b) and (38c) both use the definition of the update sequence given in (31),
and (38d) follows using the gradient inequality assumption (33). Now letting x ∈ Rn be fixed, we observe that

E
[
τ2

2µγ2
∇f(x)THG−1H∇f(x)− 1

2Γ
‖∇f(x)‖2H

]
(34)
≤ E

[(
τ2ν

2µγ2
− 1

2Γ

)
‖∇f(x)‖2H

]
(35)
≤ 0 . (39)

Breaking Locality Accelerates Block Gauss-Seidel

The first inequality uses the assumption on ν, and the second inequality uses the requirement that τ ≤ γ√
Γ

√
µ
ν . Now taking

expectations with respect to Ek,

Ek[Vk+1]− Vk ≤ Ek
[
τ2

2µγ2
k

∇f(xk+1)THkG
−1Hk∇f(xk+1)− 1

2Γk
‖∇f(xk+1)‖2Hk

]
+ 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

+ τ〈∇f(xk+1), x∗ − xk+1〉+ τ〈∇f(xk+1), xk+1 − zk〉 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉

(39)
≤ 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1 + τ〈∇f(xk+1), x∗ − xk+1〉

+ τ〈∇f(xk+1), xk+1 − zk〉 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉

(30a)
≤ −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2G−1

)
+ 〈∇f(xk+1), xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2G−1

+ τ〈∇f(xk+1), xk+1 − zk〉 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉 (40a)

(31a)
= −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2G−1

)
− µ

2
‖xk+1 − yk‖2G−1 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 − τ〈yk − xk+1,∇f(xk+1)〉 (40b)

(30b)
≤ −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2G−1

)
− µ

2
‖xk+1 − yk‖2G−1 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 + τ(f(xk+1)− f(yk)) +

τL

2
‖yk − xk+1‖2G−1 (40c)

(37)
= −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − zk‖2G−1 +

µ

2
‖zk − x∗‖2G−1 + µ〈xk+1 − zk, zk − x∗〉G−1

)
− µ

2
‖xk+1 − yk‖2G−1 − τµ〈xk+1 − zk, x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2G−1 + τ(f(xk+1)− f(yk)) +

τL

2
‖yk − xk+1‖2G−1 (40d)

(32)
= −τVk −

µ

2
‖xk+1 − yk‖2G−1 − τµ

2
‖xk+1 − zk‖2G−1 +

µ

2
‖τ(xk+1 − zk)‖2G−1 +

τL

2
‖yk − xk+1‖2G−1

(31a)
= −τVk +

(
τL

2
− µ

2τ

)
‖yk − xk+1‖2G−1 (40e)

(35)
≤ −τVk .

Above, (40a) follows from µ-strong convexity, (40b) and (40e) both use the definition of the sequence (31), (40c) follows
from L-Lipschitz gradients, (40d) uses the two-point inequality (37), and the last inequality follows from the assumption
of τ ≤

√
µ
L . The claim (36) now follows by re-arrangement.

A.3.1. Proof of Theorem 3.5

Next, we describe how to recover Theorem 3.5 from Theorem A.3.1. We do this by applying Theorem A.3.1 to the function
f(x) = 1

2x
TAx− xTb.

The first step in applying Theorem A.3.1 is to construct a probability measure on Sn×n×R+×R+ for which the random-
ness of the updates is drawn from. We already have a distribution on Sn×n from setting of Theorem 3.5 via the random
matrix H . We trivially augment this distribution by considering the random variable (H, 1, 1) ∈ Ω. By setting Γ = γ = 1,
the sequence (31a), (31b), (31c) reduces to that of Algorithm 1. Furthermore, the requirement on the ν parameter from (34)
simplifies to the requirement listed in (13). This holds by the following equivalences which are valid since conjugation by

Breaking Locality Accelerates Block Gauss-Seidel

G (which is assumed to be positive definite) preserves the semi-definite ordering,

λmax

(
E
[
(G−1/2HG−1/2)2

])
≤ ν ⇐⇒ E

[
(G−1/2HG−1/2)2

]
4 νI

⇐⇒ E
[
G−1/2HG−1HG−1/2

]
4 νI

⇐⇒ E
[
HG−1H

]
4 νG . (41)

It remains to check the gradient inequality (33) and compute the strong convexity and Lipschitz parameters. These com-
putations fall directly from the calculations made in Theorem 1 of (Qu et al., 2015), but we replicate them here for com-
pleteness.

To check the gradient inequality (33), because f is a quadratic function, its second order Taylor expansion is exact. Hence
for almost every ω ∈ Ω,

f(Φ(x;ω)) = f(x)− 〈∇f(x), H∇f(x)〉+
1

2
∇f(x)THAH∇f(x)

= f(x)− 〈∇f(x), H∇f(x)〉+
1

2
∇f(x)TS(STAS)†STAS(STAS)†ST∇f(x)

= f(x)− 〈∇f(x), H∇f(x)〉+
1

2
∇f(x)TS(STAS)†ST∇f(x)

= f(x)− 1

2
∇f(x)TH∇f(x) .

Hence the inequality (33) holds with equality.

We next compute the strong convexity and Lipschitz gradient parameters. We first show that f is λmin(E[PA1/2S])-strongly
convex with respect to the ‖·‖G−1 norm. This follows since for any x, y ∈ Rn, using the assumption that G is positive
definite,

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)TA(y − x)

= f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)TG−1/2G1/2AG1/2G−1/2(y − x)

≥ f(x) + 〈∇f(x), y − x〉+
λmin(A1/2GA1/2)

2
‖y − x‖2G−1 .

The strong convexity bound now follows since

A1/2GA1/2 = A1/2E[H]A1/2 = E[A1/2S(STAS)†STA1/2] = E[PA1/2S] .

An nearly identical argument shows that f is λmax(E[PA1/2S])-strongly convex with respect to the ‖·‖G−1 norm. Since the
eigenvalues of projector matrices are bounded by 1, we have that f is 1-Lipschitz with respect to the ‖·‖G−1 norm. This
calculation shows that the requirement on τ from (35) simplifies to τ ≤

√
µ
ν , since L = 1 and ν ≥ 1 by Proposition A.6.1

which we state and prove later.

At this point, Theorem A.3.1 yields that E[Vk] ≤ (1 − τ)kV0. To recover the final claim (14), recall that f(yk) − f∗ =
1
2‖yk − x∗‖2A. Furthermore, µG−1 4 A, since

µ ≤ λmin(A1/2GA1/2)⇐⇒ µ ≤ λmin(G1/2AG1/2)

⇐⇒ µI 4 G1/2AG1/2

⇐⇒ µG−1 4 A .

Hence, we can upper bound V0 as follows

V0 = f(y0)− f∗ +
µ

2
‖z0 − x∗‖2G−1 =

1

2
‖y0 − x∗‖2A +

µ

2
‖z0 − x∗‖2G−1

≤ 1

2
‖y0 − x∗‖2A +

1

2
‖z0 − x∗‖2A = ‖x0 − x∗‖2A .

Breaking Locality Accelerates Block Gauss-Seidel

On the other hand, we have that 1
2‖yk − x∗‖2A ≤ Vk. Putting the inequalities together,

1√
2
E[‖yk − x∗‖A] ≤

√
E[

1

2
‖yk − x∗‖2A] ≤

√
E[Vk] ≤

√
(1− τ)kV0 ≤ (1− τ)k/2‖x0 − x∗‖2A ,

where the first inequality holds by Jensen’s inequality. The claimed inequality (14) now follows.

A.3.2. Proof of Proposition 3.6

We first state and prove an elementary linear algebra fact which we will use below in our calculations.

Proposition A.3.2. Let A,B,C,D be n × n diagonal matrices, and define M =

[
A B
C D

]
. The eigenvalues of M are

given by the union of the eigenvalues of the 2× 2 matrices[
Ai Bi
Ci Di

]
, i = 1, ..., n ,

where Ai, Bi, Ci, Di denote the i-th diagonal entry of A,B,C,D respectively.

Proof. For every s ∈ C we have that the matrices −C and sI − D are diagonal and hence commute. Applying the
corresponding formula for a block matrix determinant under this assumption,

0 = det

[
sI −A −B
−C sI −D

]
= det((sI −A)(sI −D)−BC)

=

n∏
i=1

((s−Ai)(s−Di)−BiCi) =

n∏
i=1

det

[
s−Ai −Bi
−Ci s−Di

]
.

Now we proceed with the proof of Proposition 3.6. Define ek =

[
yk − x∗
zk − x∗

]
. It is easy to see from the definition of

Algorithm 1 that {ek} satisfies the recurrence

ek+1 =
1

1 + τ

[
I −HkA τ(I −HkA)

τ(I − 1
µHkA) I − τ2

µ HkA

]
ek .

Hence,[
A1/2 0

0 µ1/2G−1/2

]
ek+1

=
1

1 + τ

[
A1/2 0

0 µ1/2G−1/2

] [
I −HkA τ(I −HkA)

τ(I − 1
µHkA) I − τ2

µ HkA

]
ek

=
1

1 + τ

[
A1/2 −A1/2HkA τ(A1/2 −A1/2HkA)

µ1/2τG−1/2(I − 1
µHkA) µ1/2G−1/2(I − τ2

µ HkA)

]
ek

=
1

1 + τ

[
I −A1/2HkA

1/2 µ−1/2τ(A1/2 −A1/2HkA)G1/2

µ1/2τG−1/2(I − 1
µHkA)A−1/2 G−1/2(I − τ2

µ HkA)G1/2

] [
A1/2 0

0 µ1/2G−1/2

]
ek .

Define P =

[
A 0
0 µG−1

]
. By taking and iterating expectations,

E[P 1/2ek+1] =
1

1 + τ

[
I −A1/2GA1/2 µ−1/2τ(A1/2G1/2 −A1/2GAG1/2)

µ1/2τ(G−1/2A−1/2 − 1
µG

1/2A1/2) I − τ2

µ G
1/2AG1/2

]
E[P 1/2ek] .

Breaking Locality Accelerates Block Gauss-Seidel

Denote the matrix Q = A1/2G1/2. Unrolling the recurrence above yields that

E[P 1/2ek] = RkP 1/2e0 , R =
1

1 + τ

[
I −QQT µ−1/2τ(Q−QQTQ)

µ1/2τ(Q−1 − 1
µQ

T) I − τ2

µ Q
TQ

]
.

Write the SVD of Q as Q = UΣV T. Both U and V are n× n orthonormal matrices. It is easy to see that Rk is given by

Rk =
1

(1 + τ)k

[
U 0
0 V

][
I − Σ2 µ−1/2τ(Σ− Σ3)

µ1/2τ(Σ−1 − 1
µΣ) I − τ2

µ Σ2

]k [
UT 0
0 V T

]
. (42)

Suppose we choose P 1/2e0 to be a right singular vector of Rk corresponding to the maximum singular value σmax(Rk).
Then we have that

E[‖P 1/2ek‖2] ≥ ‖E[P 1/2ek]‖2 = ‖RkP 1/2e0‖2 = σmax(Rk)‖P 1/2e0‖2 ≥ ρ(Rk)‖P 1/2e0‖2 ,

where ρ(·) denotes the spectral radius. The first inequality is Jensen’s inequality, and the second inequality uses the fact
that the spectral radius is bounded above by any matrix norm. The eigenvalues of Rk are the k-th power of the eigenvalues
of R which, using the similarity transform (42) along with Proposition A.3.2, are given by the eigenvalues of the 2 × 2
matrices Ri defined as

Ri =
1

1 + τ

[
1− σ2

i µ−1/2τ(σi − σ3
i)

µ1/2τ(σ−1
i − 1

µσi) 1− τ2

µ σ
2
i

]
, σi = Σii , i = 1, ..., n .

On the other hand, since the entries in Σ are given by the eigenvalues of A1/2G1/2G1/2A1/2 = E[PA1/2S], there exists an
i such that σi =

√
µ. This Ri is upper triangular, and hence its eigenvalues can be read off the diagonal. This shows that

1−τ2

1+τ = 1 − τ is an eigenvalue of R, and hence (1 − τ)k is an eigenvalue of Rk. But this means that (1 − τ)k ≤ ρ(Rk).
Hence, we have shown that

E[‖P 1/2ek‖2] ≥ (1− τ)k‖P 1/2e0‖2 .

The desired claim now follows from

‖P 1/2ek‖2 =
√
‖yk − x∗‖2A + µ‖zk − x∗‖2G−1

≤
√
‖yk − x∗‖2A + ‖zk − x∗‖2A ≤ ‖yk − x∗‖A + ‖zk − x∗‖A ,

where the first inequality holds since µG−1 4 A and the second inequality holds since
√
a+ b ≤ √a+

√
b for non-negative

a, b.

A.4. Recovering the ACDM Result from Nesterov and Stich (2016)
We next show how to recover Theorem 1 of Nesterov and Stich (2016) using Theorem A.3.1, in the case of α = 1. A
nearly identical argument can also be used to recover the result of Allen-Zhu et al. (2016) under the strongly convex setting
in the case of β = 0. Our argument proceeds in two steps. First, we prove a convergence result for a simplified accelerated
coordinate descent method which we introduce in Algorithm 2. Then, we describe how a minor tweak to ACDM shows
the equivalence between ACDM and Algorithm 2.

Before we proceed, we first describe the setting of Theorem 1. Let f : Rn −→ R be a twice differentiable strongly
convex function with Lipschitz gradients. Let J1, ..., Jm denote a partition of {1, ..., n} into m partitions. Without loss of
generality, we can assume that the partitions are in order, i.e. J1 = {1, ..., n1}, J2 = {n1 + 1, ..., n2}, and so on. This
is without loss of generality since we can always consider the function g(x) = f(Πx) for a suitable permutation matrix
Π. Let B1, ..., Bm be fixed positive definite matrices such that Bi ∈ R|Ji|×|Ji|. Set Hi = SiB

−1
i ST

i , where Si ∈ Rn×|Ji|

is the column selector matrix associated to partition Ji, and define Li = supx∈Rn λmax(B
−1/2
i ST

i ∇2f(x)SiB
−1/2
i) for

i = 1, ...,m. Furthermore, define pi =
√
Li∑m

j=1

√
Lj

.

Breaking Locality Accelerates Block Gauss-Seidel

Algorithm 2 Accelerated randomized coordinate descent.
Require: µ > 0, partition {Ji}mi=1, positive definite {Bi}mi=1, Lipschitz constants {Li}mi=1, x0 ∈ Rn.

1: Set τ =
√
µ∑m

i=1

√
Li

.

2: Set Hi = SiB
−1
i ST

i for i = 1, ...,m. // Si denotes the column selector for partition Ji.

3: Set pi =
√
Li∑m

j=1

√
Lj

for i = 1, ...,m.

4: Set y0 = z0 = x0.
5: for k = 0, ..., T − 1 do
6: ik ← random sample from {1, ...,m} with P(ik = i) = pi.
7: xk+1 = 1

1+τ yk + τ
1+τ zk.

8: yk+1 = xk+1 − 1
Lik

Hik∇f(xk+1).
9: zk+1 = zk + τ(xk+1 − zk)− τ

µpik
Hik∇f(xk+1).

10: end for
11: Return yT .

A.4.1. Proof of convergence of a simplified accelerated coordinate descent method

Now consider the following accelerated randomized coordinate descent algorithm in Algorithm 2.

Theorem A.3.1 is readily applied to Algorithm 2 to give a convergence guarantee which matches the bound of Theorem 1
of Nesterov and Stich. We sketch the argument below.

Algorithm 2 instantiates (31) with the definitions above and particular choices Γk = Lik and γk = pik . We will specify the
choice of µ at a later point. To see that this setting is valid, we construct a discrete probability measure on Sn×n×R+×R+

by setting ωi = (Hi, Li, pi) and P(ω = ωi) = pi for i = 1, ...,m. Hence, in the context of Theorem A.3.1, G = E[1
γH] =∑m

i=1Hi = blkdiag(B−1
1 , B−1

2 , ..., B−1
m). We first verify the gradient inequality (33). For every fixed x ∈ Rn, for every

i = 1, ...,m there exists a ci ∈ Rn such that

f(Φ(x;ωi)) = f(x)− 1

Li
〈∇f(x), Hi∇f(x)〉+

1

2L2
i

∇f(x)THi∇2f(ci)Hi∇f(x)

= f(x)− 1

Li
〈∇f(x), Hi∇f(x)〉+

1

2L2
i

∇f(x)TSiB
−1/2
i B

−1/2
i ST

i ∇2f(ci)SiB
−1/2
i B

−1/2
i ST

i ∇f(x)

≤ f(x)− 1

Li
〈∇f(x), Hi∇f(x)〉+

1

2Li
∇f(x)TSiB

−1
i ST

i ∇f(x)

= f(x)− 1

2Li
‖∇f(x)‖2Hi .

We next compute the ν constant defined in (34). We do this by checking the sufficient condition that HiG
−1Hi 4 νHi for

i = 1, ...,m. Doing so yields that ν = 1, since

HiG
−1Hi = SiB

−1
i ST

i blkdiag(B1, B2, ..., Bm)SiB
−1
i ST

i = SiB
−1
i BiB

−1
i ST

i = SiB
−1
i ST

i = Hi .

To complete the argument, we set µ as the strong convexity constant and L as the Lipschitz gradient constant of f with
respect to the ‖·‖G−1 norm. It is straightforward to check that

µ = inf
x∈Rn

λmax(G1/2∇2f(x)G1/2) , L = sup
x∈Rn

λmax(G1/2∇2f(x)G1/2) .

We now argue that
√
L ≤ ∑m

i=1

√
Li. Let x ∈ Rn achieve the supremum in the definition of L (if no such x exists, then

Breaking Locality Accelerates Block Gauss-Seidel

let x be arbitrarily close and take limits). Then,

L = λmax(G1/2∇2f(x)G1/2) = λmax((∇2f(x))1/2G(∇2f(x))1/2)

= λmax

(
(∇2f(x))1/2

(
m∑
i=1

SiB
−1
i ST

i

)
(∇2f(x))1/2

)
(a)

≤
m∑
i=1

λmax((∇2f(x))1/2SiB
−1
i ST

i (∇2f(x))1/2)

(b)
=

m∑
i=1

λmax(SiS
T
i ∇2f(x)SiS

T
i SiB

−1
i ST

i)

(c)
=

m∑
i=1

λmax(B
−1/2
i ST

i ∇2f(x)SiB
−1/2
i) ≤

m∑
i=1

Li .

Above, (a) follows by the triangle inequality, (b) follows by the fact that ST
i Si = I , and (c) follows since λmax(SiMST

i) =
λmax(M) for any p × p symmetric matrix M . Using the fact that

√
a+ b ≤ √a +

√
b for any non-negative a, b, the

inequality
√
L ≤∑m

i=1

√
Li immediately follows. To conclude the proof, it remains to calculate the requirement on τ via

(35). Since γi√
Γi

= pi√
Li

= 1∑m
i=1

√
Li

, we have that γi√
Γi
≤ 1√

L
, and hence the requirement is that τ ≤

√
µ∑m

i=1

√
Li

.

A.4.2. Relating Algorithm 2 to ACDM

For completeness, we replicate the description of the ACDM algorithm from Nesterov and Stich in Algorithm 3. We make
one minor tweak in the initialization of the Ak, Bk sequence which greatly simplifies the exposition of what follows.

Algorithm 3 ACDM from Nesterov and Stich (Nesterov & Stich, 2016), α = 1, β = 1/2 case.
Require: µ > 0, partition {Ji}mi=1, positive definite {Bi}mi=1, Lipschitz constants {Li}mi=1, x0 ∈ Rn.

1: Set Hi = SiB
−1
i ST

i for i = 1, ...,m. // Si denotes the column selector for partition Ji.

2: Set pi =
√
Li∑m

j=1

√
Lj

for i = 1, ...,m.

3: Set A0 = 1, B0 = µ. // Modified from A0 = 0, B0 = 1.
4: Set S1/2 =

∑m
i=1

√
Li.

5: Set y0 = z0 = x0.
6: for k = 0, ..., T − 1 do
7: ik ← random sample from {1, ...,m} with P(ik = i) = pi.
8: ak+1 ← positive solution to a2

k+1S
2
1/2 = (Ak + ak+1)(Bk + µak+1).

9: Ak+1 = Ak + ak+1, Bk+1 = Bk + µak+1.
10: αk = ak+1

Ak+1
, βk = µ ak+1

Bk+1
.

11: yk = (1−αk)xk+αk(1−βk)zk
1−αkβk .

12: xk+1 = yk − 1
Lik

Hik∇f(yk).

13: zk+1 = (1− βk)zk + βkyk − ak+1

Bk+1pik
Hik∇f(yk).

14: end for
15: Return xT .

We first write the sequence produced by Algorithm 3 as

yk =
(1− αk)xk + αk(1− βk)zk

1− αkβk
, (43a)

xk+1 = yk −
1

Lik
Hik∇f(yk) , (43b)

zk+1 − zk = βk

(
yk − zk −

ak+1

Bk+1pikβk
Hik∇f(yk)

)
. (43c)

Breaking Locality Accelerates Block Gauss-Seidel

Since βkBk+1 = µak+1, the zk+1 update simplifies to

zk+1 − zk = βk

(
yk − zk −

1

µpik
Hik∇f(yk)

)
.

A simple calculation shows that

(1− αkβk)yk = (1− αk)xk + αk(1− βk)zk ,

from which we conclude that

αk(1− βk)

1− αk
(yk − zk) = xk − yk . (44)

Observe that

Ak+1 =

k+1∑
i=1

ai +A0 , Bk+1 = µ

k+1∑
i=1

ai +B0 .

Hence as long as µA0 = B0 (which is satisfied by our modification), we have that µAk+1 = Bk+1 for all k ≥ 0. With this
identity, we have that αk = βk for all k ≥ 0. Therefore, (44) simplifies to

βk(yk − zk) = xk − yk .

We now calculate the value of βk. At every iteration, we have that

a2
k+1S

2
1/2 = Ak+1Bk+1 =

1

µ
B2
k+1 =⇒ ak+1

Bk+1
=

1√
µS1/2

.

By the definition of βk,

βk = µ
ak+1

Bk+1
=

√
µ

S1/2
=

√
µ∑m

i=1

√
Li

= τ .

Combining these identities, we have shown that (43a), (43b), and (43c) simplifies to

yk =
1

1 + τ
xk +

τ

1 + τ
zk , (45a)

xk+1 = yk −
1

Lik
Hik∇f(yk) , (45b)

zk+1 − zk = τ

(
yk − zk −

1

µpik
Hik∇f(yk)

)
. (45c)

This sequence directly coincides with the sequence generated by Algorithm 2 after a simple relabeling.

A.4.3. Accelerated Gauss-Seidel for fixed partitions from ACDM

We now describe Algorithm 4, which is the specialization of ACDM (Algorithm 3) to accelerated Gauss-Seidel in the fixed
partition setting.

As mentioned previously, we set the function f(x) = 1
2x

TAx − xTb. Given a partition {Ji}n/pi=1, we let Bi = ST
i ASi,

where Si ∈ Rn×p is the column selector matrix associated to the partition Ji. With this setting, we have that L1 = L2 =
... = Ln/p = 1, and hence we have pi = p/n for all i (i.e. the sampling distribution is uniform over all partitions). We
now need to compute the strong convexity constant µ. With the simplifying assumption that the partitions are ordered, µ
is simply the strong convexity constant with respect to the norm induced by the matrix blkdiag(B1, B2, ..., Bn/p). Hence,
using the definition of µpart from (3), we have that µ = n

pµpart. Algorithm 4 now follows from plugging our particular
choices of f and the constants into Algorithm 3.

Breaking Locality Accelerates Block Gauss-Seidel

Algorithm 4 Accelerated randomized block Gauss-Seidel for fixed partitions (Nesterov & Stich, 2016).
Require: A ∈ Rn×n, A � 0, b ∈ Rn, x0 ∈ Rn, block size p, µpart defined in (3).

1: Set A0 = 0, B0 = 1.
2: Set σ = n

pµpart.
3: Set y0 = z0 = x0.
4: for k = 0, ..., T − 1 do
5: ik ← uniform from {1, 2, ..., n/p}.
6: Sk ← column selector associated with partition Jik .
7: ak+1 ← positive solution to a2

k+1(n/p)2 = (Ak + ak+1)(Bk + σak+1).
8: Ak+1 = Ak + ak+1, Bk+1 = Bk + σak+1.
9: αk = ak+1

Ak+1
, βk = σ ak+1

Bk+1
.

10: yk = (1−αk)xk+αk(1−βk)zk
1−αkβk .

11: xk+1 = yk − Sk(ST
kASk)−1ST

k (Ayk − b).
12: zk+1 = (1− βk)zk + βkyk − nak+1

pBk+1
Sk(ST

kASk)−1ST
k (Ayk − b).

13: end for
14: Return xT .

A.5. A Result for Randomized Block Kaczmarz
We now use Theorem A.3.1 to derive a result similar to Theorem 3.5 for the randomized accelerated Kaczmarz algorithm.
In this setting, we let A ∈ Rm×n, m ≥ n be a matrix with full column rank, and b ∈ Rm such that b ∈ R(A). That is,
there exists a unique x∗ ∈ Rn such that Ax∗ = b. We note that this section generalizes the result of (Liu & Wright, 2016)
to the block case (although the proof strategy is quite different).

We first describe the randomized accelerated block Kaczmarz algorithm in Algorithm 5. Our main convergence result
concerning Algorithm 5 is presented in Theorem A.5.1.

Algorithm 5 Accelerated randomized block Kaczmarz.

Require: A ∈ Rm×n, A full column rank, b ∈ R(A), sketching matrices {Sk}T−1
k=0 ⊆ Rm×p, x0 ∈ Rn, µ ∈ (0, 1), ν ≥ 1.

1: Set τ =
√
µ/ν.

2: Set y0 = z0 = x0.
3: for k = 0, ..., T − 1 do
4: xk+1 = 1

1+τ yk + τ
1+τ zk.

5: yk+1 = xk+1 − (ST
kA)†ST

k (Axk+1 − b).
6: zk+1 = zk + τ(xk+1 − zk)− τ

µ (ST
kA)†ST

k (Axk+1 − b).
7: end for
8: Return yT .

Theorem A.5.1. (Theorem 3.7 restated.) Let A be an m × n matrix with full column rank, and b ∈ R(A). Let x∗ ∈ Rn
denote the unique vector satisfying Ax∗ = b. Suppose each Sk, k = 0, 1, 2, ... is an independent copy of a random
sketching matrix S ∈ Rm×p. Let µ = λmin(E[PATS]). Suppose the distribution of S satisfies µ > 0. Invoke Algorithm 5
with µ and ν, where ν is defined as

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
, G = E[H] , H = PATS . (46)

Then for all k ≥ 0 we have

E[‖yk − x∗‖2] ≤
√

2

(
1−

√
µ

ν

)k/2
‖x0 − x∗‖2 . (47)

Proof. The proof is very similar to that of Theorem 3.5, so we only sketch the main argument. The key idea is to use the
correspondence between randomized Kaczmarz and coordinate descent (see e.g. Section 5.2 of (Lee & Sidford, 2013)).
To do this, we apply Theorem A.3.1 to f(x) = 1

2‖x − x∗‖22. As in the proof of Theorem 3.5, we construct a probability

Breaking Locality Accelerates Block Gauss-Seidel

measure on Sn×n ×R+ ×R+ from the given random matrix H by considering the random variable (H, 1, 1). To see that
the sequence (31a), (31b), and (31c) induces the same update sequence as Algorithm 5, the crucial step is to notice that

Hk∇f(xk+1) = PATSk∇f(xk+1) = ATSk(ST
kAA

TSk)†ST
kA(xk+1 − x∗)

= ATSk(ST
kAA

TSk)†ST
k (Axk+1 − b) = (ST

kA)†ST
k (Axk+1 − b) .

Next, the fact that f is λmin(E[PATS])-strongly convex and 1-Lipschitz with respect to the ‖·‖G−1 norm, where G =
E[PATS], follows immediately by a nearly identical argument used in the proof of Theorem 3.5. It remains to check the
gradient inequality (33). Let x ∈ Rn be fixed. Then using the fact that f is quadratic, for almost every ω ∈ Ω,

f(Φ(x;ω)) = f(x)− 〈∇f(x), H(x− x∗)〉+
1

2
‖H(x− x∗)‖22

= f(x)− 〈x− x∗, PATS(x− x∗)〉+
1

2
‖PATS(x− x∗)‖22

= f(x)− 1

2
〈x− x∗, PATS(x− x∗)〉 .

Hence the gradient inequality (33) holds with equality.

A.5.1. Computing ν and µ in the setting of (Liu & Wright, 2016)

We first state a proposition which will be useful in our analysis of ν.
Proposition A.5.2. Let M1, ...Ms ⊆ Rn denote subspaces of Rn such that M1 + ...+Ms = Rn. Then we have

s∑
i=1

PMi

(
s∑
i=1

PMi

)−1

PMi
4

s∑
i=1

PMi
.

Proof. We will prove that for every 1 ≤ i ≤ s,

PMi

(
s∑
i=1

PMi

)−1

PMi 4 PMi , (48)

from which the claim immediately follows. By Schur complements, (48) holds iff

0 4

[
PMi

PMi

PMi

∑s
i=1 PMi

]
=

[
PMi

PMi

PMi PMi

]
+

[
0 0
0
∑s
j 6=i PMj

]
=

[
1 1
1 1

]
⊗ PMi

+

[
0 0
0
∑s
j 6=i PMj

]
.

Since the eigenvalues of a Kronecker product are given by the Cartesian product of the individual eigenvalues, (48) holds.

Now we can estimate the ν and µ values. Let ai ∈ Rn denote each row of A, with ‖ai‖2 = 1 for all i = 1, ...,m. In this
setting, H = Pai = aia

T
i with probability 1/m. Hence, G = E[H] =

∑m
i=1

1
maia

T
i = 1

mA
TA. Furthermore,

E[HG−1H] =

m∑
i=1

aia
T
i m(ATA)−1aia

T
i

1

m

=

m∑
i=1

aia
T
i (ATA)−1aia

T
i

(a)

4
m∑
i=1

aia
T
i = ATA = mG ,

where (a) follows from Proposition A.5.2. Hence, ν 6= m. On the other hand,

µ = λmin(E[PATS]) = λmin(G) =
1

m
λmin(ATA) .

Breaking Locality Accelerates Block Gauss-Seidel

A.6. Proofs for Random Coordinate Sampling (Section 3.3)
Our primary goal in this section is to provide a proof of Lemma 3.8. Along the way, we prove a few other results which
are of independent interest. We first provide a proof of the lower bound claim in Lemma 3.8.

Proposition A.6.1. Let A be an n × n matrix and let S ∈ Rn×p be a random matrix. Put G = E[PA1/2S] and suppose
that G is positive definite. Let ν > 0 be any positive number such that

E[PA1/2SG
−1PA1/2S] 4 νG , G = E[PA1/2S] . (49)

Then ν ≥ n/p.

Proof. Since trace commutes with expectation and respects the positive semi-definite ordering, taking trace of both sides
of (49) yields that

n = Tr(GG−1) = Tr(E[PA1/2SG
−1]) = E[Tr(PA1/2SG

−1)] = E[Tr(PA1/2SG
−1PA1/2S)]

= Tr(E[PA1/2SG
−1PA1/2S])

(49)
≤ νTr(E[PA1/2S])

= νE[Tr(PA1/2S)] = νE[rank(A1/2S)] ≤ νp .

Next, the upper bound relies on the following lemma, which generalizes Lemma 2 of (Qu et al., 2016).

Lemma A.6.2. Let M be a random matrix. We have that

E[PM] < E[M](E[MTM])†E[MT] . (50)

Proof. Our proof follows the strategy in the proof of Theorem 3.2 from (Zhang, 2005). First, write PB = B(BTB)†BT.
Since R(BT) = R(BTB), we have by generalized Schur complements (see e.g. Theorem 1.20 from (Zhang, 2005)) and
the fact that expectation preserves the semi-definite order,[

BTB BT

B PB

]
< 0 =⇒

[
E[BTB] E[BT]
E[B] E[PB]

]
< 0 .

To finish the proof, we need to argue that R(E[BT]) ⊆ R(E[BTB]), which would allow us to apply the generalized
Schur complement again to the right hand side. Fix a z ∈ R(E[BT]); we can write z = E[BT]y for some y. Now let
q ∈ Kern(E[BTB]). We have that E[BTB]q = 0, which implies 0 = qTE[BTB]q = E[‖Bq‖22]. Therefore, Bq = 0 a.s.
But this means that zTq = E[yTBq] = 0. Hence, z ∈ Kern(E[BTB])⊥ = R(E[BTB]). Now applying the generalized
Schur complement one more time yields the claim.

We are now in a position to prove the upper bound of Lemma 3.8. We apply Lemma A.6.2 to M = A1/2SSTA1/2 to
conclude, using the fact thatR(M) = R(MMT), that

E[PA1/2S] = E[PA1/2SSTA1/2] < E[A1/2SSTA1/2](E[A1/2SSTASSTA1/2])†E[A1/2SSTA1/2] . (51)

Elementary calculations now yield that for any fixed symmetric matrix A ∈ Rn×n,

E[SST] =
p

n
I, E[SSTASST] =

p

n

(
p− 1

n− 1
A+

(
1− p− 1

n− 1

)
diag(A)

)
. (52)

Hence plugging (52) into (51),

E[PA1/2S] <
p

n

(
p− 1

n− 1
I +

(
1− p− 1

n− 1

)
A−1/2diag(A)A−1/2

)−1

. (53)

We note that the lower bound (5) for µrand presented in Section 2 follows immediately from (53).

Breaking Locality Accelerates Block Gauss-Seidel

We next manipulate (13) in order to use (53). Recall that G = E[H] and H = S(STAS)†ST. From (41), we have

λmax

(
E
[
(G−1/2HG−1/2)2

])
≤ ν ⇐⇒ E

[
HG−1H

]
4 νG .

Next, a simple computation yields

E[HG−1H] = E[S(STAS)−1STG−1S(STAS)−1ST] = A−1/2E[PA1/2S(E[PA1/2S])−1PA1/2S]A−1/2 .

Again, since conjugation by A1/2 preserves semi-definite ordering, we have that

E[HG−1H] 4 νG⇐⇒ E[PA1/2S(E[PA1/2S])−1PA1/2S] 4 νE[PA1/2S] .

Using the fact that for positive definite matrices X,Y we have X 4 Y iff Y −1 4 X−1, (53) is equivalent to

(E[PA1/2S])−1 � n

p

(
p− 1

n− 1
I +

(
1− p− 1

n− 1

)
A−1/2diag(A)A−1/2

)
.

Conjugating both sides by PA1/2S and taking expectations,

E[PA1/2S(E[PA1/2S])−1PA1/2S] � n

p

(
p− 1

n− 1
E[PA1/2S] +

(
1− p− 1

n− 1

)
E[PA1/2SA

−1/2diag(A)A−1/2PA1/2S]

)
.

(54)

Next, letting J ⊆ 2[n] denote the index set associated to S, for every S we have

PA1/2SA
−1/2diag(A)A−1/2PA1/2S

= A1/2S(STAS)−1STA1/2A−1/2diag(A)A−1/2A1/2S(STAS)−1STA1/2

= A1/2S(STAS)−1/2(STAS)−1/2(STdiag(A)S)(STAS)−1/2(STAS)−1/2STA1/2

4 λmax((STdiag(A)S)(STAS)−1)A1/2S(STAS)−1STA1/2

4
maxi∈J Aii
λmin(AJ)

PA1/2S

4 max
J∈2[n]:|J|=p

κeff,J(A)PA1/2S .

Plugging this calculation back into (54) yields the desired upper bound of Lemma 3.8.

A.7. More Experiments
A.7.1. Kernel ridge regression on smaller datasets

In addition to using the large CIFAR-10 augmented dataset, we also tested our algorithms on the smaller MNIST2 dataset.
To generate a kernel matrix, we applied the Gaussian kernel on the raw MNIST pixels to generate a matrix K with
n = 60000 rows and columns.

Results from running 500 iterations of random coordinate sampling and fixed partitioning algorithms are shown in Figure 5.
We plot the convergence rates both across time and across iterations. Comparing convergence across iterations we see that
random coordinate sampling is essential to achieve errors of 10−4 or lower. In terms of running time, similar to the
CIFAR-10 experiment, we see that the benefits in fixed partitioning of accessing coordinates faster comes at a cost in terms
of convergence rate, especially to achieve errors of 10−4 or lower.

A.7.2. Computing the µ and ν constants

In our last experiment, we explicitly compute the µ and ν constants from Theorem 3.5 for a few 16 × 16 positive definite
matrices constructed as follows.

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Breaking Locality Accelerates Block Gauss-Seidel

0 100 200 300 400 500
Iteration

10-6

10-5

10-4

10-3

10-2

10-1

100
‖x

k
−
x
∗
‖2 A
/‖
x
∗
‖2 A

MNIST KRR, n=60000, p=4000

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

0 200 400 600 800 1000 1200
Time (s)

10-6

10-5

10-4

10-3

10-2

10-1

100

‖x
k
−
x
∗
‖2 A
/
‖x

∗
‖2 A

MNIST KRR, n=60000, p=4000

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 5. Experiments comparing fixed partitions versus uniform random sampling for MNIST while running kernel ridge regression.
MNIST has n = 60000 coordinates and we set block size to p = 4000.

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

ν

Linearly Spaced Eigenvalues

= 10

= 100

= 1000

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

ν

Random Wishart

m= 18

m= 20

m= 22

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

103

ν

Deterministic Structured Matrices
Sobolev
Circulant
Tridiag

Figure 6. Comparison of the computed ν constant (solid lines) and ν bound from Theorem 3.5 (dotted lines) on random matrices with
linearly spaced eigenvalues and random Wishart matrices.

Linearly spaced eigenvalues. We first draw Q uniformly at random from n × n orthogonal matrices. We then construct
Ai = QΣiQ

T for i = 1, 2, 3, where Σ1 is diag(linspace(1, 10, 16)), Σ2 is diag(linspace(1, 100,
16)), and Σ3 is diag(linspace(1, 1000, 16)).

Random Wishart. We first drawBi with iidN(0, 1) entries, whereBi ∈ Rmi×16 withm1 = 18, m2 = 20, andm3 = 22.
We then set Ai = BT

i Bi.

Sobolev kernel. We form the matrix Aij = min(i, j) with 1 ≤ i, j ≤ n. This corresponds to the gram matrix for the set
of points x1, ..., xn ∈ R with xi = i under the Sobolev kernel min(x, y).

Circulant matrix. We let A be a 16 × 16 instance of the family of circulant matrices An = Fndiag(cn)F ∗n where Fn
is the n × n unitary DFT matrix and cn = (1, 1/2, ..., 1/(n/2 + 1), ..., 1/2, 1). By construction this yields a real valued
circulant matrix which is positive definite.

Tridiagonal matrix. We let A be a tridiagonal matrix with the diagonal value equal to one, and the off diagonal value
equal to (δ − a)/(2 cos(πn/(n+ 1))) for δ = 1/10. The matrix has a minimum eigenvalue of δ.

Figure 6 shows the results of our computation for the linearly spaced eigenvalues ensemble, the random Wishart ensemble
and the other deterministic structured matrices. Alongside with the actual ν values, we plot the bound given for each
instance by Lemma 3.8. From the figures we see that our bound is quite close to the computed value of ν for circulant
matrices and for random matrices with linearly spaced eigenvalues with small κ. We plan to extend our analysis to derive
a tighter bound in the future.

Breaking Locality Accelerates Block Gauss-Seidel

Supplementary References
Zhang, Fuzhen. The Schur Complement and its Applications, volume 4 of Numerical Methods and Algorithms. Springer,

2005.

